K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Tứ giác AEDM có: I là giao của AD và ME, I là trung điểm của AD và ME (gt)

\(\Rightarrow AEDM\)là hình bình hành (1) \(\Rightarrow AB//DM\)

Tương tự \(EBNC\)là hình bình hành (2) \(\Rightarrow AB//CN\) 

Mặt khác, AB // DC (gt) 

Do đó: \(M,N\in CD\)

b, Từ (1), ta được AE = MD

    Từ (2), ta được EB = CN

ABCD là hình bình hành (gt) nên AB = DC

\(\Rightarrow AE+EB+AB=MD+CN+DC\)

\(\Rightarrow2AB=MN\Rightarrow MN=2CD\)

Chúc bạn học tốt.

6 tháng 10 2018

A B C D E M I N K
mình vẽ hình không được đẹp lắm bạn cố nhìn nhé
GT: AI=AD; EI =IM; BK=KC;EK=KN 
      AB//DC
KL: M,N\(\in\)CD; MN=2DC
cmr: tứ giác AEDM là hình bình hành
ta có: AI=ID (gt)
         EI=IM(gt)
=> tứ giác AEDM là hình bình hành (định lí 4)
=>  AE// MD//DC
Vậy điểm M nằm trên cạnh DC
cmr: tứ giác EBNC là hình bình hành
ta có: BK=KC (gt)
          EK=KN(gt)
=> tứ giác EBNC là hình bình hành
=> EB//NC//CD
vậy điểm N nằm trên cạnh CD
b) mình ko biết làm thông cảm

11 tháng 9 2021

à không a) m , n , c , d thẳng hàng 

Xét tứ giác AEDM có 

I là trung điểm của đường chéo AD

I là trung điểm của đường chéo EM

Do đó: AEDM là hình bình hành

Suy ra: AE//DM

Xét tứ giác BECN có

K là trung điểm của đường chéo BC

K là trung điểm của đường chéo EN

Do đó: BECN là hình bình hành

Suy ra: CN//EB

Ta có: AB//MD

mà AB//CD

và CD,MD có điểm chung là D

nên C,D,M thẳng hàng

Ta có: CM//AB

CN//AB

mà CM và CN có điểm chung là C

nên M,N,C,D thẳng hàng

Bạn tự vẽ hình nhé

a) Gọi E' là giao của MP với CD

Do AB song song với CD nên theo Talet, ta có : \(\frac{AM}{MD}=\frac{MP}{ME'}=1\)

Suy ra MP=ME' . Mà MP = ME nên E trùng E'

Suy ra E thuộc CD

Tương tự với F

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :a) MENF là hình bình hành.b) Các đường thẳng AC, BD, MN,...
Đọc tiếp

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?

Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :

a) MENF là hình bình hành.

b) Các đường thẳng AC, BD, MN, EF đồng quy.

Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.

Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 6 : Cho tứ  giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.

          a/ Tính số đo các góc của tứ giác ABCD

          b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm  của đoạn MN.

Bài 7: Cho hình thang ABCD ( AB//CD).

          a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.

          b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.

0