K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Tứ giác AEDM có: I là giao của AD và ME, I là trung điểm của AD và ME (gt)

\(\Rightarrow AEDM\)là hình bình hành (1) \(\Rightarrow AB//DM\)

Tương tự \(EBNC\)là hình bình hành (2) \(\Rightarrow AB//CN\) 

Mặt khác, AB // DC (gt) 

Do đó: \(M,N\in CD\)

b, Từ (1), ta được AE = MD

    Từ (2), ta được EB = CN

ABCD là hình bình hành (gt) nên AB = DC

\(\Rightarrow AE+EB+AB=MD+CN+DC\)

\(\Rightarrow2AB=MN\Rightarrow MN=2CD\)

Chúc bạn học tốt.

6 tháng 10 2018

A B C D E M I N K
mình vẽ hình không được đẹp lắm bạn cố nhìn nhé
GT: AI=AD; EI =IM; BK=KC;EK=KN 
      AB//DC
KL: M,N\(\in\)CD; MN=2DC
cmr: tứ giác AEDM là hình bình hành
ta có: AI=ID (gt)
         EI=IM(gt)
=> tứ giác AEDM là hình bình hành (định lí 4)
=>  AE// MD//DC
Vậy điểm M nằm trên cạnh DC
cmr: tứ giác EBNC là hình bình hành
ta có: BK=KC (gt)
          EK=KN(gt)
=> tứ giác EBNC là hình bình hành
=> EB//NC//CD
vậy điểm N nằm trên cạnh CD
b) mình ko biết làm thông cảm

11 tháng 9 2021

à không a) m , n , c , d thẳng hàng 

Xét tứ giác AEDM có 

I là trung điểm của đường chéo AD

I là trung điểm của đường chéo EM

Do đó: AEDM là hình bình hành

Suy ra: AE//DM

Xét tứ giác BECN có

K là trung điểm của đường chéo BC

K là trung điểm của đường chéo EN

Do đó: BECN là hình bình hành

Suy ra: CN//EB

Ta có: AB//MD

mà AB//CD

và CD,MD có điểm chung là D

nên C,D,M thẳng hàng

Ta có: CM//AB

CN//AB

mà CM và CN có điểm chung là C

nên M,N,C,D thẳng hàng

27 tháng 10 2020

a) Xét tứ giác APDE có

M là trung điểm của đường chéo AD(gt)

M là trung điểm của đường chéo EP(E và P đối xứng nhau qua M)

Do đó: APDE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒ED//AP(hai cạnh đối trong hình bình hành APDE)

hay ED//AB

Xét tứ giác BPCF có

N là trung điểm của đường chéo BC(gt)

N là trung điểm của đường chéo PF(P và F đối xứng nhau qua N)

Do đó: BPCF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒BP//CF(hai cạnh đối trong hình bình hành BPCF)

hay CF//AB

Ta có: ABCD là hình bình hành(gt)

nên CD//AB(hai cạnh đối của hình bình hành ABCD)

mà CF//AB(cmt)

và CD, CF có điểm chung là C

nên F∈CD(đpcm1)

Ta có: CD//AB(cmt)

mà DE//AB(cmt)

và DE, CD có điểm chung là D

nên E∈CD(đpcm2)

b) Ta có: AB=AP+PB(P nằm giữa A và B)

mà AP=ED(hai cạnh đối của hình bình hành APDE)

và CF=PB(hai cạnh đối của hình bình hành PBFC)

nên AB=ED+CF

mà AB=DC(hai cạnh đối của hình bình hành ABCD)

nên DC=DE+DF

Ta có: DC+DE+CF=EF(E,D,C,F thẳng hàng)

nên DC+DC=EF

hay EF=2DC(đpcm)