Tìm GTNN của : A = | x-7 | +6
B = | 3/5 - X | + 1 / 9
Help me !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-7\right|+6\)
có : \(\left|x-7\right|\ge0\)
\(\Rightarrow\left|x-7\right|+6\ge6\)
dấu ''='' xảy ra khi |x - 7| = 0
=> x - 7 = 0
=> x = 7
vậy_
b tương tự
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$B=|x-\frac{1}{3}|+|x-\frac{5}{3}|=|x-\frac{1}{3}|+|\frac{5}{3}-x|$
$\geq |x-\frac{1}{3}+\frac{5}{3}-x|=\frac{4}{3}$
Vậy GTNN của $B$ là $\frac{4}{3}$. Giá trị này đạt tại $(x-\frac{1}{3})(\frac{5}{3}-x)\geq 0$
$\Leftrightarrow \frac{1}{3}\leq x\leq \frac{5}{3}$
1,
Có \(\sqrt{x}\ge0\)với mọi x
=> 2 + \(\sqrt{x}\ge\)2 với mọi x
=> A \(\ge\)2 với mọi x
Dấu "=" xảy ra <=> \(\sqrt{x}=0\)<=> x = 0
KL: Amin = 2 <=> x = 0
2, (câu này phải là GTLN chứ nhỉ)
Có \(\sqrt{x-1}\ge0\)với mọi x
=> \(2.\sqrt{x-1}\ge0\)với mọi x
=> \(5-2.\sqrt{x-1}\le5\)với mọi x
=> B \(\le\)5 với mọi x
Dấu "=" xảy ra <=> \(\sqrt{x-1}=0\)<=> x - 1 = 0 <=> x = 1
KL Bmax = 5 <=> x = 1
\(\sqrt{x}\ge0\)
\(\Rightarrow A=2+\sqrt{x}\ge2+0\ge2\)
\(MinA=2\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)
2) \(5-2\sqrt{x-1}\le5\)
\(MinA=5\Leftrightarrow x-1=0\Rightarrow x=1\)
a)x\(\in\){8;18} và y\(\in\){7;2}
b)x=6
c)x=-5; y=-3
d)x=7
e)x=4
Dễ vậy!
x2-4x+4=4x2-12x+9
\(\Leftrightarrow\)3x2-8x+5=0
\(\Leftrightarrow\)3x2-3x-5x+5=0
\(\Leftrightarrow\)3x(x-1)-5(x-1)=0
\(\Leftrightarrow\)(x-1)(3x-5)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)
b,x2-2x-25=0
\(\Leftrightarrow\)(x-1)2-26=0
\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)
2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4
b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017
mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory
Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3
Bài 1:
a) \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)
\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)
VẬy tập nghiệm của phương trình là : S={11/3 ; 7}
b) Nếu x^2 -2x =25 thì lẻ lắm . Tớ nghĩ phải là : x^2 -2x = 24
Bài 2 :
a) \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\) hay \(A\ge4\)
Vậy GTNN của A là 4 khi x = 1 ( hay x-1 =0 )
b) \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)
Vì \(\left(2x-1\right)^2\ge0\) và \(\left(y+1\right)^2\ge0\) nên \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)
HAy \(B\ge-2017\) Vậy GTNN của B là -2017 khi x=1/2 và y = -1
A=|x-7|+6
Vì |x-7| ≥ 0 nên |x-7|+6 ≥ 6
GTNN A = 6 khi và chỉ khi |x-7|=0⇒x=7
Câu B làm tương tự câu A nha bạn
\(B=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}>=\dfrac{1}{9}\)
Dấu '=' xảy ra khi x=3/5