cho tam giác nhọn ABC lấy M bất kì trên BC gọi E,F lần lượt là điểm đối xứng với M qua AB và AC.gọi I,K là giao điểm của E,F với AB và AC.
Chứng minh MA là phân giác của góc IMK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có \(M,D\) đối xứng qua \(AB\)
\(\rightarrow AD=AM\)
Lại có \(M,E\) đối xứng qua \(AC\rightarrow AM=AE\)
\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN
b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)
\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)
Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)
Mà \(\Delta ADE\) cân tại \(A\)
\(\rightarrow\widehat{ADE}=\widehat{AED}\)
\(\rightarrow\widehat{IMA}=\widehat{KMA}\)
\(\rightarrow MA\) là phân giác \(\widehat{IMK}\)c. Ta có \(M,D\) đối xứng qua \(AB\)\(\rightarrow\widehat{DAB}=\widehat{BAM}\rightarrow\widehat{DAM}=2\widehat{BAM}\)Tương tự \(\widehat{MAE}=2\widehat{MAC}\)\(\rightarrow\widehat{DAE}=\widehat{DAM}+\widehat{MAE}\)\(\rightarrow\widehat{DAE}=2\widehat{BAM}+2\widehat{MAC}=2\widehat{BAC}=140^o\)\(\rightarrow\widehat{ADE}=\widehat{AED}=90^o-\frac{1}{2}\widehat{DAE}=20^o\)Cho tam giác nhọn ABC, M thuộc BC. Gọi D,E lần lượt là điểm đối xứng của M qua AB và AC
A) Chứn minh tam giác ADE cân
b) DE cắt AB và AC thứ tự tại I và K. Chứng minh MA là đường phân giác
c) Cho biết góc BAC = 70 độ Tính góc ADE
giúp dùm em ạ
a) Gọi giao diểm của DM và AB là P, giao điểm của ME và AC là Q.
Xét tam giác ADP và AMP có:
AP chung, APD=APM=90*, DP=PM
=> tam giác ADP=tam giác AMP=>AD=AM
Tương tự, ta chúng minh được tam giác AMQ=tam giác AEQ=>AM=AE
Do AD=AM,AM=AE=> AD=AE=> tam giác ADE cân tại A.
b) Gọi giao điểm của DE và AM là F.
Ta có: AI là phân giác góc DAF=> DA/AF=DI/IF
AK là phan giác góc FAE=> AE/AF=KE/FK
mà AD=AE=>DI/IF=KE/FK=>DI/KE=IF/KF(1)
Tự chứng minh tam giác DIP=MIP=>DI=IM
tam giác KMQ=tam giác KEQ=>KM=KE
Thay điều trên vào (1)=> IM/KM=IF/IK=>AM là phân giác góc IMK.
a: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
Do đó: AMDN là hình chữ nhật
b: AC=8cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
c: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường trung trực
nên AB là tia phân giác của góc DAE(1)
Ta có: D và F đối xứng nhau qua AC
nên AC là đường trung trực của DF
=>AD=AF
=>ΔADF cân tại A
mà AC là đường trung trực của DF
nên AC là tia phân giác của góc DAF(2)
Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)=2\cdot90^0=180^0\)
Do đó: F,A,E thẳng hàng
https://olm.vn/hoi-dap/question/1311100.html