K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

t A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1) 
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*) 
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24 
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co: 
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] = 
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4) 
nhận thấy A(k+1) là tích của số tự nhiên liên tiếp=> A(k+1) chia hết cho 24 
 => A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*). 

28 tháng 7 2015

Ta có:

n4+6n3+11n2+6n = n4+2n3+4n3+8n2+3n2+6n = (n4+2n3)+(4n3+8n2)+(3n2+6n) = n3(n+2)+4n2(n+2)+3n(n+2) 

= (n+2)(n3+4n2+3n) = (n+2)n(n2+3n) = n(n+1)(n+2)(n+3)

Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n4+2n3+4n3+8n2+3n2+6n chia hết cho 24.

26 tháng 6 2015

dat A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1) 
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*) 
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24 (**). 
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co: 
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] = 
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4) 
nhan thay A(k+1) la tich cua so tu nhien lien tiep=> A(k+1) chia het cho 24 (***) 
tu (*) (**) va (***) => A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*). 

26 tháng 6 2015

Phân tích n^4+6n^3+n^2+6n thành: n(n+)(n+2)(n+3)
Nhận thấy:n,(n+),(n+2),(n+3) là 4 số nguyên liên tiếp với n nguyên
=> n(n+)(n+2)(n+3)chia hết cho 24
=>n^4+6n^3+n^2+6n chia hết cho 24

     tick đúng cho mình nhé !

16 tháng 9 2016

undefined

16 tháng 9 2016

khó nhìn thiệt nhưng chắc đúng

14 tháng 8 2019

Ta có:

    n⁴ + 6n³ + 11n² + 6n

=  n⁴ + 2n³ + 4n³ + 8n² + 3n² + 6n

=  (n⁴+2n³) + (4n³ + 8n²)+(3n² + 6n)

= n³(n+2) + 4n²(n+2) + 3n(n+2) 

= (n+2)(n³+4n²+3n)

= (n+2)n(n²+3n)

= n(n+1)(n+2)(n+3)

Vì tích 4 số tự nhiên liên tiếp luôn chia hết cho 24 nên n⁴+2n³+4n³+8n²+3n²+6n chia hết cho 24.

Chúc bạn học tốt😊😊. kk mình nha😅😅

22 tháng 9 2016

\(A=n^4+6n^3+11n^2+6n\)

    \(=n\left(n^3+6n^2+11n+6\right)\)

    \(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

    \(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)

    \(=n\left(n+1\right)\left(n^2+5n+6\right)\)

    \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 

    

15 tháng 7 2016

a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19

Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)

Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19

 

15 tháng 7 2016

Muộn rồi b chiều tớ hứa là sẽ làm 4h30' chiều