Tìm số hạng thứ 100 của dãy ,số hạng thứ n của dãy sau:
a)3;24;63;120;195
b)6;14;24;36;50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A/ Hai số tiếp theo của dãy là: 25; 29
B/ Số hạng thứ 10 của dãy là: 41
Số hạng thứ n của dãy là: 4 x (n-1) +5
Tương tự làm số thứ 100 và 2015 nha em ^^
C/ Số 12345 thuộc dãy số trên, số hạng đứng thứ 3086
Số 1013 thuộc dãy số trên, số hạng đứng thứ 253
Số 2013 không thuộc dãy số trên
A/ Hai số tiếp theo của dãy là: 25; 29
B/ Số hạng thứ 10 của dãy là: 41
Số hạng thứ n của dãy là: 4 x (n-1) +5
Tương tự làm số thứ 100 và 2015 nha em ^^
C/ Số 12345 thuộc dãy số trên, số hạng đứng thứ 3086
Số 1013 thuộc dãy số trên, số hạng đứng thứ 253
Số 2013 không thuộc dãy số trên
mình biết làm câu a còn câu b chả hiểu gì cả
a : số hạng thứ 6 của dãy là :63 + 120 + 195 = 378
số hạng thứ 7 của dãy là : 120 + 195 + 378 =693
số hạng thứ 8 của dãy là :195 + 378 + 693 = 1266
mình chỉ cách làm nha : nếu muốn tìm số tiếp theo kể từ số thứ 3 cộng lại thì sẽ ra
li-ke cho mình nha
a) Gọi số hạng thứ 100 của dãy là n, n là số tự nhiên
Ta có : 3 = 3
8 = 3 + 5
15 = 3 + 5 + 7
24 = 3 + 5 + 7 + 9
35 = 3 + 5 + 7 + 11
n = 3 + 5 + 7 + 11 + ..... + n1
n1 = (100-1) x 2 + 3 = 201
⇒ n = (201+3) x 100 : 2 = 10200
Số hạng thứ 100 của dãy là 10200
Ta có: \(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{x}\)
\(=\dfrac{1}{1.2};\dfrac{1}{2.3};\dfrac{1}{3.4};\dfrac{1}{4.5};...;\dfrac{1}{n\left(n+1\right)}\)
=> Số hạng thứ 100 và 2022 lần lượt là: \(\dfrac{1}{100.101}=\dfrac{1}{10100};\dfrac{1}{2022.2023}=\dfrac{1}{4090506}\)
Tổng 100 số hạng đầu tiên:
- Ta có: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...\)
\(\Rightarrow=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{100}+\dfrac{1}{100}\right)-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
-Dãy số tổng quát:
\(\dfrac{1}{2};\dfrac{1}{6};\dfrac{1}{12};\dfrac{1}{20};...;\dfrac{1}{n\left(n+1\right)}\)(n thuộc N*)
-Số hạng thứ 100 của dãy: \(\dfrac{1}{100\left(100+1\right)}=\dfrac{1}{10100}\)
-Số hạng thứ 2022 của dãy: \(\dfrac{1}{2022\left(2022+1\right)}=\dfrac{1}{4090506}\)
- Tổng 100 số hạng đầu tiên của dãy:
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{10100}\)=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{100.101}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
=\(1-\dfrac{1}{101}=\dfrac{100}{101}\)
Ta thấy: 1=(1-1).4+1
5=(2-1).4+1
9=(3-1).4+1
13=(4-1).4+1
17=(5-1).4+1
………………
Quy luật: Mỗi số hạng trong dãy bằng số thứ tự của nó trừ 1 rồi nhân với 4 cuối cùng cộng thêm 1.
a) Gọi số n là số hạng thứ a của dãy.
Ta có: n=(a-1).4+1
=>3 số hạng tiếp theo của dãy là:(6-1).4+1=21
(7-1).4+1=25
(8-1).4+1=29
b)Số hạng thứ 2011 của dãy là: (2011-1).4+1=8041
c)Ta có:S=1+5+9+…+8041
=>\(S=\frac{\left(\left(8041-1\right):4+1\right).\left(8041+1\right)}{2}\)
=>\(S=\frac{\left(8040:4+1\right).8042}{2}\)
=>\(S=\left(2010+1\right).\frac{8042}{2}\)
=>\(S=2011.4021\)
=>\(S=8086231\)
a) dạng tổng quát là: 4k + 1
3 số điền vào la 21;25;29
Số thứ 2011 : 4 x 2011 - 4 + 1 = 8041
Ta có : 3, 24, 63, 120, 195, ...
3=(3.1-2)3.1
24=(3.2-2)3.2
63=(3.3-2)3.3
.......
n=(3.100-2)3.100=89400
a) Chịu
b) Quy luật : 6 + 8 + 10 + ... + [ 6 + 2 ( n - 1 ) ]
Vậy số hạng thứ 100 là 6 + 8 + 10 + ... + [ 6 + 2 ( 100 - 1 ) ] = 10500
Số hạng thứ n là 6 + 8 + 10 + ... + [ 6 + 2 ( n - 1 ) ]
3=1.3
24=4.6
63=7.9
120=10.12
195=13.15
X\(_n\)=(3.n-2).3.n
X\(_{100}\)=(3.100-2).3.100=89400