K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

Ta có A = 1 / 2 . ( 1 - 1 / 2 + 1 / 2 - 1/ 3 + ............+ 1 / 49 - 1 / 50 )

= 1/ 2 . 1 + ( -1/2 + 1/2 ) + ...........+ ( - 1/49 + 1/49 ) -1/50

=1/2 + 0 + 0 + .................+ 0 - 1/50

= 1/2 - 1/50

=12/25

Vậy A = 12/25

Ta có 12/25 < 1/2

vậy 25/12 < 1/2

4 tháng 4 2021

\(\dfrac{N}{2}=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =1-\dfrac{1}{50}< 1\\ N< 2\)

Cũng đc đấy :)

 

 

24 tháng 3 2017

Ta thấy:

\(1\cdot2^2=2^2;2\cdot3^2>3^2;3\cdot4^2>4^2;...;49\cdot50^2>50^2\)

\(\Rightarrow\dfrac{1}{1.2^2}=\dfrac{1}{2^2};\dfrac{1}{2\cdot3^2}< \dfrac{1}{3^2};\dfrac{1}{3\cdot4^2}< \dfrac{1}{4^2};...;\dfrac{1}{49\cdot50^2}< \dfrac{1}{50^2}\)

\(\Rightarrow\dfrac{1}{1\cdot2^2}+\dfrac{1}{2\cdot3^2}+\dfrac{1}{3\cdot4^2}+...+\dfrac{1}{49\cdot50^2}< \dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

hay A<B

Vậy A<B

20 tháng 3 2022

\(x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\cdot\left(1-\dfrac{1}{50}\right)=1\\ \dfrac{49}{50}x=1\\ x=1:\dfrac{49}{50}\\ x=\dfrac{50}{49}\)

20 tháng 3 2022

\(x.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\dfrac{49}{50}=1\\ \Rightarrow x=1:\dfrac{49}{50}\\ \Rightarrow x=\dfrac{50}{49}\)

AH
Akai Haruma
Giáo viên
3 tháng 12 2017

Lời giải:

Ta có:

\(\frac{1}{1.2^2}=\frac{1}{2^2}\)

\(2.3^2>3^2\Rightarrow \frac{1}{2.3^2}< \frac{1}{3^2}\)

\(3.4^2> 4^2\Rightarrow \frac{1}{3.4^2}< \frac{1}{4^2}\)

...........

\(49.50^2> 50^2\Rightarrow \frac{1}{49.50^2}< \frac{1}{50^2}\)

Cộng theo từng vế các BĐT:

\(\Rightarrow \frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+....+\frac{1}{49.50^2}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)

\(\Leftrightarrow A< B\)

Vậy ta có đpcm.

18 tháng 4 2022

A = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50

A = 1/1 - 1/50

A = 49/50

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)