K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2022

A = 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50

A = 1/1 - 1/50

A = 49/50

\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

20 tháng 3 2022

\(x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ x\cdot\left(1-\dfrac{1}{50}\right)=1\\ \dfrac{49}{50}x=1\\ x=1:\dfrac{49}{50}\\ x=\dfrac{50}{49}\)

20 tháng 3 2022

\(x.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\left(1-\dfrac{1}{50}\right)=1\\ \Rightarrow x.\dfrac{49}{50}=1\\ \Rightarrow x=1:\dfrac{49}{50}\\ \Rightarrow x=\dfrac{50}{49}\)

19 tháng 6 2021

`A=1/(1.2)+1/(2.3)+1/(3.4)+....+1/(49.50)`

`=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50`

`=1-1/50=49/50`

19 tháng 6 2021

hè công nhận ít câu hỏi thiệt !!

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

26 tháng 3 2017

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)

\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=1-\dfrac{1}{50}=\dfrac{49}{50}\)

14 tháng 4 2018

Ta có: \(M=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)

\(\Rightarrow M\) \(\)\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow M=1-\dfrac{1}{50}< 1\)

Vậy M < 1.

1 tháng 5 2018

M=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=1-\dfrac{1}{50}=\dfrac{50}{50}-\dfrac{1}{50}=\dfrac{49}{50}.\)

Vậy M=\(\dfrac{49}{50}\)

*Trước dấu = là 1 chữ M

4 tháng 4 2021

\(\dfrac{N}{2}=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =1-\dfrac{1}{50}< 1\\ N< 2\)

Cũng đc đấy :)

 

 

11 tháng 4 2021

undefined

A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{49}-\dfrac{1}{50}\)

  =\(\dfrac{1}{1}-\dfrac{1}{50}\)=\(\dfrac{49}{50}\)

10 tháng 3 2023

a)

`1/1-1/2`

`=2/2-1/2`

`=1/2`

b)

`1/(1*2)+1/(2*3)`

`=1/1-1/2+1/2-1/3`

`=1/1-1/3`

`=3/3-1/3`

`=2/3`

c)

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)

d) 

\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?

\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)