Cho đg tròn tâm O bán kính R dg kính AB. Vẽ dây AC sao cho góc CAB=30° trên tia đối của tia BA lấy điểm M sao cho BM = R CM rằg
a) MC là tiếp tuyến của dg tròn tâm O
b) MC^2 = 3R^2
Giúp giải vs 9h hn đi hc r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOBC có OB=OC
nên ΔOBC cân tại O
mà \(\widehat{CBO}=60^0\)
nên ΔOBC đều
Xét ΔOCM có
CB là đường trung tuyến
CB=OM/2
Do đó: ΔOCM vuông tại C
hay MC là tiếp tuyến của (O)
a/ ta co tam giac ACG co CAB=30=>CB=R
tam giac COM co CB=OB=BM=> tam giac ACG vuong tai C=>MC là tiếp tuyến của đường tròn O
MC2=MO2-OC2=4R2-R2=3R2
tick nha
a, Vì OCB là tam giác đều nên BC=BO=BM=R
=> O C M ^ = 90 0 => MC là tiếp tuyến (O;R)
b, Ta có: O M 2 = O C 2 + M C 2
=> M C 2 = 3 R 2
a: Xét (O) có
ΔACB nội tiếp đường tròn
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔCAB vuông tại C có
\(\sin\widehat{CAB}=\dfrac{CB}{AB}\)
\(\Leftrightarrow CB=R\)
Xét ΔOCM có
CB là đường trung tuyến ứng với cạnh OM
\(CB=\dfrac{OM}{2}\)
Do đó: ΔCOM vuông tại C
hay MC là tiếp tuyến của (O)