K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOBC có OB=OC

nên ΔOBC cân tại O

mà \(\widehat{CBO}=60^0\)

nên ΔOBC đều

Xét ΔOCM có 

CB là đường trung tuyến

CB=OM/2

Do đó: ΔOCM vuông tại C

hay MC là tiếp tuyến của (O)

21 tháng 2 2017

a, Vì OCB là tam giác đều nên BC=BO=BM=R

=>  O C M ^ = 90 0 => MC là tiếp tuyến (O;R)

b, Ta có:  O M 2 = O C 2 + M C 2

=>  M C 2 = 3 R 2

a: Xét (O) có

ΔACB nội tiếp đường tròn

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔCAB vuông tại C có

\(\sin\widehat{CAB}=\dfrac{CB}{AB}\)

\(\Leftrightarrow CB=R\)

Xét ΔOCM có 

CB là đường trung tuyến ứng với cạnh OM

\(CB=\dfrac{OM}{2}\)

Do đó: ΔCOM vuông tại C

hay MC là tiếp tuyến của (O)

14 tháng 12 2015

a/ ta co tam giac ACG co CAB=30=>CB=R

tam giac COM co CB=OB=BM=> tam giac ACG vuong tai C=>MC là tiếp tuyến của đường tròn O

MC2=MO2-OC2=4R2-R2=3R2

tick nha

25 tháng 3 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác COD cân tại O có OH là đường cao

⇒ OH cũng là tia phân giác ⇒ ∠(COM) = ∠(MOD)

Xét ΔMCO và ΔMOD có:

CO = OD

∠(COM) = ∠(MOD)

MO là cạnh chung

⇒ ΔMCO = ΔMOD (c.g.c)

⇒ ∠(MCO) = ∠(MDO)

∠(MCO) =  90 0 nên ∠(MDO) = 90 0

⇒ MD là tiếp tuyến của (O)