cho hình bình hành ABCD, góc 1 nhọn. Hai đường chéo AC và BD cắt nhau tại I. kẻ DE vuông góc AB tại E, DF vuông góc BC tại F. cho góc BAD=alpha:
a) Định Dạng tam giác EIF
b)Tính góc EIF theo alpha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nội quy của giúp tôi giải toán không được đặt những bài toán linh tinh bạn hãy rút kinh nghiệm cho lần sau nhé
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: BD=căn 8^2+6^2=10cm
BE=10^2/6=100/6=50/3cm
EC=DC^2/BC=8^2/6=32/3cm
Xét ΔEBD có CH//BD
nên CH/BD=EC/EB
=>CH/10=32/50=16/25
=>CH=160/25=6,4cm
Bạn tự vẽ hình nhé:
Mình chỉ gợi ý thôi nhé:
a, Tam giác BED vuông ở E có EO = BO = DO .
Tam giác BFD vuông ở F có: FO = OB = OD
=> EO = FO
=> Tam giác EOF cân ở O.
b, Xét tam giác QAO = tam giác FCO ( g - c - g)
=> OQ=OF
Xét tứ giác FBQD có hai đường chéo cắt nhau tại trung điểm mỗi đường nên FBQD là hình bình hành mà có góc BFD = 90 độ
=> Tứ giác FBQD là hình chữ nhật.
c, Tự chứng minh: tam giác EOB và OBF cân ở O.
Góc BAD = 60 độ => Góc ABC = 120 độ
Có góc EOF = EOB + BOF = ( 180 - 2. OBE ) + ( 180 - 2.OBF ) = 360 - 240 = 120 độ
d, Khi OE//AD => EO // BC.
Mà trong tam giác ABC có OA=OC => EA=EB
=> DE là đường trung tuyến và cũng là đường cao trong tam giác ADB.
=> Tam giác ADB cân ở D có góc BAD = 60 độ
=> Tam giác ADB đều.
=> AD = AB
=> AB = BC = CD=DA
=> Tứ giác ABCD là hình thoi.
b: Xét ΔDKO vuông tại K và ΔBHO vuông tại H có
OD=OB
\(\widehat{DOK}=\widehat{BOH}\)
Do đó: ΔDKO=ΔBHO
Suy ra: DK=BH
Xét tứ giác BKDH có
DK//BH
DK=BH
Do đó: BKDH là hình bình hành
a: Xét ΔAIB vuông tại I và ΔAEC vuông tại E có
góc IAB chung
=>ΔAIB đồng dạng vơi ΔAEC
b: ΔAIB đồng dạng với ΔAEC
=>AI/AE=AB/AC
=>AI/AB=AE/AC
=>ΔAIE đồng dạng với ΔABC và AB*AE=AI*AC
c: Xét ΔFAC vuông tại F và ΔICB vuông tại I có
góc FAC=góc ICB
=>ΔFAC đồng dạng với ΔICB
=>AF/IC=CA/CB
=>AF*CB=CA*IC
=>AB*AE+AF*CB=AC^2