Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHCD vuông tại H và ΔCDB vuông tại C có
góc HCD=góc CDB
=>ΔHCD đồng dạng với ΔCDB
=>HC/CD=CD/DB
=>CD^2=HC*DB
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHCD vuông tại H và ΔCDB vuông tại C có
góc HCD=góc CDB
=>ΔHCD đồng dạng với ΔCDB
=>HC/CD=CD/DB
=>CD^2=HC*DB
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHDC vuông tại H và ΔDBE vuông tại D có
góc HDC=góc DBE
=>ΔHDC đồng dạng với ΔDBE
=>DH/DB=CH/DE
=>DH*DE=CB*CH=DC^2
c: DC^2=CH*DB
=>CH*10=8^2=64
=>CH=6,4cm
\(DH=\sqrt{8^2-6.4^2}=4.8\left(cm\right)\)
=>DE=8^2/4,8=40/3(cm)
=>CE=32/3(cm)
Xét ΔHCE vuông tại H và ΔCDE vuông tại C có
góc HEC chung
=>ΔHCE đồng dạng với ΔCDE
=>\(\dfrac{S_{HCE}}{S_{CDE}}=\left(\dfrac{CE}{DE}\right)^2=\left(\dfrac{32}{3}:\dfrac{40}{3}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: BD=căn 8^2+6^2=10cm
BE=10^2/6=100/6=50/3cm
EC=DC^2/BC=8^2/6=32/3cm
Xét ΔEBD có CH//BD
nên CH/BD=EC/EB
=>CH/10=32/50=16/25
=>CH=160/25=6,4cm
a: Xét ΔBCE vuông tại C và ΔDBE vuông tại B có
góc E chung
Do đó: ΔBCE\(\sim\)ΔDBE
b: Đề sai rồi bạn