K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(\frac{2}{x+32}=\frac{-1}{3x+5}\)

\(\Leftrightarrow2\left(3x+5\right)=-1\left(x+32\right)\)

\(\Leftrightarrow6x+10=-x-32\)

\(\Leftrightarrow7x=-42\)

\(\Rightarrow x=-6\)

Vậy................

hok tốt

30 tháng 8 2018

\(\frac{2}{x+32}=\frac{-1}{3x+5}\)

\(\Rightarrow\frac{2}{x+32}=\frac{2}{-6x-10}\)

\(\Rightarrow x+32=-6x-10\)

\(x+6x=-10+32\)

\(\Rightarrow7x=22\Rightarrow x=\frac{22}{7}\)

28 tháng 9 2018

a/ \(\left(\frac{1}{5}\right)^x=\left(\frac{1}{5^3}\right)^3=\left(\frac{1}{5}\right)^9\Rightarrow x=9\)

b/ \(\left(\frac{3}{5}\right)^x=\left(\frac{3^2}{5^2}\right)^3=\left(\frac{3}{5}\right)^6\Rightarrow x=6\)

c\(2^{3-2x}=\left(2^3\right)^3=2^9\Rightarrow3-2x=9\Rightarrow x=-3\)

d/ \(2^{3x+1}=32^2=\left(2^5\right)^2=2^{10}\Rightarrow3x+1=10\Rightarrow x=3\)

e/ \(3^{6-3x}=81^3=\left(3^4\right)^3=3^{12}\Rightarrow6-3x=12\Rightarrow x=-2\)

28 tháng 9 2018

\(\left(\frac{1}{5}\right)^x=\left(\frac{1}{125}\right)^3\Leftrightarrow\left(\frac{1}{5}\right)^x=\left[\left(\frac{1}{5}\right)^3\right]^3\Leftrightarrow\left(\frac{1}{5}\right)^x=\left(\frac{1}{5}\right)^9\Leftrightarrow x=9\)

\(\left(\frac{3}{5}\right)^x=\left(\frac{9}{25}\right)^3\Leftrightarrow\left(\frac{3}{5}\right)^x=\left[\left(\frac{3}{5}\right)^2\right]^3\Leftrightarrow\left(\frac{3}{5}\right)^x=\left(\frac{3}{5}\right)^6\Leftrightarrow x=6\)

\(2^{3-2x}=8^3\Leftrightarrow2^{3-2x}=\left(2^3\right)^3\Leftrightarrow2^{3-2x}=2^9\Leftrightarrow3-2x=9\)

\(\Leftrightarrow2x=3-9\Leftrightarrow2x=-6\Leftrightarrow x=\left(-6\right):2\Leftrightarrow x=-3\)

Các phép còn lại làm tương tự bn nha !

20 tháng 4 2017

a)\(\frac{3x-2}{5}\ge\frac{x}{2}+0,8\) va \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)

 \(\cdot\frac{3x-2}{5}\ge\frac{x}{2}+0,8\)

  \(=\frac{2\left(3x-2\right)}{10}\ge\frac{5x}{10}+\frac{8}{10}\)

   \(\Rightarrow2\left(3x-2\right)\ge5x+8\)

   \(=6x-4\ge5x+8\)

   \(=6x-5x\ge8+4\)

    \(x\ge12\)(1)

\(\cdot1-\frac{2x-5}{6}>\frac{3-x}{4}\)

 \(=\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)

  \(\Rightarrow12-2\left(2x-5\right)>3\left(3-x\right)\)

  \(=12-4x+10>9-3x\)

  \(=-4x+3x>9-12-10\)

   \(=-x>-13\)

    \(=x< 13\) (2)

Từ (1) và (2) => \(13>x\ge12\)=> x=12

3 tháng 4 2021

a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)

\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)

\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)

b, Ta có : \(\left(x+5\right)^2-9x-45=0\)

\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)

TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)

c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)

\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x - 21-13-3
x315-1
3 tháng 4 2021

d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)

\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )

e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)

TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )

TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)