so sánh x với 3.Trong đó x=2016/2017+2017/2018+2018/2016
AI NHANH MK TICK CHO NHA LÀM ƠN MK CẦN GAAPS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
so sánh x với 3.Trong đó x=2016/2017+2017/2018+2018/2016
AI NHANH MK TICK CHO NHA LÀM ƠN MK CẦN GAAPS
B = \(\frac{2015+2016+2017}{2016+2017+2018}=\frac{2016.3}{2017.3}=\frac{2016}{2017}\left(1\right)\)
Mà A = \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}.\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=> A > B.
Vậy A > B .
Bạn Dont look at me
Bạn nên làm theo bạn ấy
Bạn k đúng cho bạn ấy. Bởi vì bạn ấy làm đúng
Theo mk là vậy
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....
#)Giải :
\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)
Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)
\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)
\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)
\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)
Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)
Ta có :
\(A=\frac{2018^{2017}+1}{2018^{2017}-1}=\frac{2018^{2017}-1+2}{2018^{2017}-1}=\frac{2018^{2017}-1}{2018^{2017}-1}+\frac{2}{2018^{2017}-1}=1+\frac{2}{2018^{2017}-1}\)
\(B=\frac{2018^{2017}-1}{2018^{2017}-3}=\frac{2018^{2017}-3+2}{2018^{2017}-3}=\frac{2018^{2017}-3}{2018^{2017}-3}+\frac{2}{2018^{2017}-3}=1+\frac{2}{2018^{2017}-3}\)
Vì \(2018^{2017}-1>2018^{2017}-3\) nên \(\frac{2}{2018^{2017}-1}< \frac{2}{2018^{2017}-3}\)
\(\Rightarrow\)\(1+\frac{2}{2018^{2017}-1}< 1+\frac{2}{2018^{2017}-3}\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
ta có nếu \(\frac{a}{b}\)>1 thì \(\frac{a}{b}\)>\(\frac{a+m}{b+m}\)
mà B> nên B=\(\frac{2018^{2017}-1}{2018^{2017}-3}\)>\(\frac{2018^{2017}-1+2}{2018^{2017}-3+2}\)=\(\frac{2018^{2017}+1}{2018^{2017}-1}\)=A
vậy B>A
\(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018+18162}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018}{10^{2017}+2018}+\frac{18162}{10^{2017}+2018}\)
\(=1+\frac{18162}{10^{2017}+2018}\)
\(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow10B=\frac{10^{2018}+20180}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018+18162}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018}{10^{2018}+2018}+\frac{18162}{10^{2018}+2018}\)
\(=1+\frac{18162}{10^{2018}+2018}\)
Ta thấy: \(1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2018}+2018}\)
=> 10A > 10B
=> A > B
\(B=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2016}\)
\(B=1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{2}{2016}\)
\(B=\left(1+1+1\right)-\left(\frac{1}{2017}+\frac{1}{2018}-\frac{2}{2016}\right)\)
\(B=3-\left(...\right)< 3\)
P/s :
\(\left(...\right)la`\left(\frac{1}{2017}+\frac{1}{2018}-\frac{2}{2016}\right)\)
quên ^^
Bạn vào trang Wolfram Alpha sẽ thấy:
20182017 có 6667 chữ số
20172018 có 6669 chữ số
Vậy 20182017 < 20172018
\(x=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}< 1+1+1\)
\(=>x< 3\)