K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 5 2021

\(A=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{n\left(n+5\right)}\)

\(A=\frac{1}{5}\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{n\left(n+5\right)}\right)\)

\(A=\frac{1}{5}\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{n+5-n}{n\left(n+5\right)}\right)\)

\(A=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+5}\right)\)

\(A=\frac{1}{5}\left(1-\frac{1}{n+5}\right)\)

\(A=\frac{n+4}{5n+25}\)

DD
11 tháng 5 2021

\(B=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(3B=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3\)

\(3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(3B=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

\(3B=n\left(n+1\right)\left(n+2\right)\)

\(B=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

a.

$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$

$=1-\frac{1}{1000}=\frac{999}{1000}$

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

b.

$5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{495.500}$

$=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{500-495}{495.500}$

$=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{495}-\frac{1}{500}$

$=1-\frac{1}{500}=\frac{499}{500}$

$\Rightarrow B=\frac{499}{500}: 5= \frac{499}{2500}$

a: =1/2-1/3+1/3-1/4+...+1/99-1/100

=1/2-1/100=49/100

b; =5/3(1-1/4+1/4-1/7+...+1/100-1/103)

=5/3*102/103

=510/309=170/103

c: =1/2(1/3-1/5+1/5-1/7+...+1/49-1/51)

=1/2*16/51=8/51

DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)Hướng dẫn giảiCách 1:Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhiên liên tiếp, khi đó:Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1= 1.2.3 - 0.1.2a2 = 2.3 → 3a2 = 2.3.3 → 3a2= 2.3.4 - 1.2.3a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4…………………..an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)nan = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n...
Đọc tiếp

DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.

Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

Hướng dẫn giải

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhiên liên tiếp, khi đó:

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1= 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2= 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

3(a1 + a2 + ... + an) = n(n + 1)(n + 2) ⇒ A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3}

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3

3A =  1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)]

3A = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1)

3A = n(n + 1)(n + 2)

\Rightarrow A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3}

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

Hướng dẫn giải

Áp dụng tính kế thừa của bài 1 ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

\Rightarrow B = \frac{{\left( {n - 1} \right).n.\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

Bài 3. Tính C = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)

Hướng dẫn giải

Ta thấy: 1.4 = 1.(1 + 3)

2.5 = 2.(2 + 3)

3.6 = 3.(3 + 3)

4.7 = 4.(4 + 3)

…….

n(n + 3) = n(n + 1) + 2n

Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n

C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n

C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)

⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n)

3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)

3C = n(n + 1)(n + 2) + \frac{3\left(2n\ +\ 2\right)n}{2}

⇒ C = \frac{n(n+1)(n+2)}{3} + \frac{3\left(2n\ +\ 2\right)n}{2} = \frac{n(n+1)(n+5)}{3}

Bài 4: Tính D = 1+ 22 + 32 + .... + n2

Hướng dẫn giải

Nhận xét: Các số hạng của bài 1 là tích của hai số tự nhiên liên tiếp, còn ở bài này là tích của hai số tự nhiên giống nhau. Do đó ta chuyển về dạng bài tập 1:

Ta có:

A = 1.2 + 2.3 + 3.4 + ...+ n(n + 1)

A = 1.(1 + 1) + 2.(1 + 2) + 3.(1 + 3) + .... + n.(n + 1)

A = 12 + 1.1 + 22 + .1 + 32 + 3.1 + ... + n2 + n.1

A = (12 + 22 + 32 + .... + n2) + (1 + 2 + 3 + ... + n)

Mặt khác theo bài tập 1 ta có:

A = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3} và 1 + 2 + 3 + .... + n = \frac{{n\left( {n + 1} \right)}}{2}

⇒D = 12 + 22 + 32 + .... + n2 = \frac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{3} - \frac{{n\left( {n + 1} \right)}}{2} = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}

Bài 5: Tính E = 13 + 23 + 33 + ... + n3

Hướng dẫn giải

Tương tự bài toán ở trên, xuất phát từ bài toán 2, ta đưa tổng B về tổng E:

B = 1.2.3 + 2.3.4 + 4.5.6 + ... + (n - 1)n(n + 1)

B = (2 - 1).2.(2 + 1) + (3 -1).3.(3 +1) + ....+ (n - 1).n.(n + 1)

B = (23 - 2) + (33 - 3) + .... + (n3 - n)

B = (23 + 33 + .... +n3) - (2 + 3 + ... + n)

B = (13 + 23 + 33 + ... + n3) - (1 + 2 + 3 + ... + n)

B = (13 + 23 + 33 + ... + n3) - \frac{n(n + 1)}{2}

⇒ 13 + 23 + 33 + ... + n3 = B + \frac{n(n + 1)}{2}

Mà B = \frac{{\left( {n - 1} \right).n\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

⇒ E = 13 + 23 + 33 + ... + n3 = \frac{{\left( {n - 1} \right).n\left( {n + 1} \right)\left( {n + 2} \right)}}{4} + \frac{n(n + 1)}{2}

3
18 tháng 10 2021

giúp mik

18 tháng 10 2021

mình thấy bài bạn có đáp án hết rồi mà?

a)

*\(1+2+3+...+\left(n-1\right)+n\)

Số số hạng là:

\(\left(n-1\right):1+1=n-1+1=n\)(số hạng)

Tổng của dãy số là: 

\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)

*\(1+3+5+...+\left(2n-1\right)\)

Số số hạng của dãy số là: 

\(\left(2n-1-1\right):2+1=\dfrac{\left(2n-2\right)}{2}+1=n-1+1=n\)(số hạng)

Tổng của dãy số là: 

\(\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n^2}{2}=2n\)

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh