Cho \(a,b,c\inℕ^∗\)sao cho mỗi số < tổng 2 số còn lại
Chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
Các bn giúp mk nha. Cảm ơn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai: \(x^2=bc\) phải là \(a^2=bc\)
Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)
\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)
\(\Rightarrow a-ka=-b-kb\)
\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1)
Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)
\(\Rightarrow c-kc=-a-ka\)
\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\) ( 2)
Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)
\(\Rightarrow a^2=bc\left(đpcm\right)\)
\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(k\)nhé !!!
\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Theo đề ta được:
\(\hept{\begin{cases}a< \left(b+c\right)\\b< \left(a+c\right)\\c< \left(a+b\right)\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{b+c}< 0\\\frac{b}{a+c}< 0\\\frac{c}{a+b}< 0\end{cases}\Rightarrow}\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ne N}\)( Tổng của ba phân số không thể bằng 1 số tự nhiên với a,b,c không là số âm )
Ta có:
\(\frac{a}{b+c}< 1\left(a< b+c\right)\)
\(\frac{b}{c+a}< 1\left(b< c+a\right)\)
\(\frac{c}{a+b}< 1\left(c< a+b\right)\)
Mà \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\) là phân số. Như vậy nếu phân số lớn nhất có tử bé hơn mẫu là \(\frac{1}{2}\). Vậy nếu:
\(\frac{a}{b+c}=\frac{1}{2};\frac{b}{c+a}=\frac{1}{2};\frac{c}{a+b}=\frac{1}{2}\) thì tổng sẽ là \(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}=1,5< 2\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\left(dpcm\right)\)
mn giúp mk nha mk đg cần gấp