K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

a, Gọi 3 cạnh của tam giác là a, b, c. Gọi chiều cao cần tìm là x ( thay a bằng x nhé)

Ta có:

4a/2 = 12b/2 = xc/2 = S (S là diện tích tam giác)
=> a = 2 ; b = 6 ; c = 2S /x
Do x - y < z < x + y (bất đẳng thức trong tam giác)
=> S/2 - S/6 < 2S/x < S/2 + S/6
=> 2S /6 < 2S /x < 2S/3 . Mà x thuộc Z
=> x = {4 ,5}

28 tháng 10 2019

P/s : Đề sai sửa đề . Đề như sau ( theo mình nghĩ ) :

Cho 3 số a,b,c,d khác nhau và khác 0 thỏa mãn :

\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{a+c}\). tính giá trị của \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

                                                                            Bài làm :

Áp dụng TC của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{a+c}=\frac{a+b+c}{b+c+a+b+a+c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}b+c=2a\\a+b=2c\\a+c=2b\end{cases}}\)

Thay vào biểu thức trên , ta có:

\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

\(=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}\)

\(=2+2+2=6\)

3 tháng 9 2016

Ta có : \(\frac{a}{abc+ab+a+1}+\frac{b}{bcd+bc+b+1}+\frac{c}{acd+cd+c+1}+\frac{d}{abd+ad+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{abd}{abcd^2+abcd+abd+ad}+\frac{abcd}{a^2bcd^2+abcd^2+abcd+abd}+\frac{d}{abd+ad+d+1}\)

\(=\frac{ad}{abd+ad+d+1}+\frac{abd}{abd+ad+d+1}+\frac{1}{abd+ad+d+1}+\frac{d}{abd+ad+d+1}\)

\(=\frac{abd+ad+d+1}{abd+ad+d+1}=1\)

17 tháng 8 2018

mn giúp mk nha mk đg cần gấp

9 tháng 8 2017

\(A=\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{2n-1-\left(n-14\right)}{n+8}=\frac{n+13}{n+8}\)

Để A thuộc Z thì \(n+13⋮n+8\Rightarrow n+13-\left(n+8\right)⋮n+8\)

\(\Rightarrow5⋮n+8\Rightarrow n+8\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)

\(\Leftrightarrow n\in\left\{-7;-3;-9;-13\right\}\)

OK

17 tháng 8 2017

hi lily

2 tháng 11 2015

ta co:              

 

 2bd =c[b+d]= cd+cb va a+c=2b nen ta co;

2bd =[a+c]d=ad+cd=cd+cb

hayad =bc =>dieu phai chung minh