K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

Ta có : n^4+4
=n^4+4n^2+4-4n^2
=(n^2+2)^2-4n^2
=(n^2-2n^2+2)(n^2+2n^2+2)
={(n-1)^2+1}{(n+1)^2+1} #
lúc này có hai trường hợp xảy ra
*(n-1)^2+1=1-->(n-1)^2=0
--->n-1=0-->n=1
Thay vào # ta được: n^4+1=5(là số nguyên tố )
*(n+1)^2+1=1-->(n+1)^2=0-->n=-1(loại vì n là số tự nhiên
Vậy n=1 thì n^4+4=5 là số nguyên tố

nếu đúng thì k nha

15 tháng 8 2018

Lê Thị Như Quỳnh . Mk k cần nx nhg dù sao cũng cảm ơn!

16 tháng 1 2022

n=0 hoặc n=1.

16 tháng 1 2022

phân tích đa thức thành nhân tử:

(2n2-2n+1)(2n2+2n+1)

21 tháng 10 2017
m^4+4n^4=(m^2-2mn+2n^2)*(m^2+2mn+2n^2) Do m,n thuộc N, m^4+4n^4 nguyên tố => m^2-2mn+2n^2=1 Hoặc m^2+2mn+2n^2=1 Với m^2-2mn+2n^2=1 <=> (m-n)^2+n^2=1 <=> m-n = 0, n=1 Hoặc m-n=(+-)1,n=0 Sau đó bạn suy ra m,n nhé (chú ý m,n thuộc N) Với m^2+2mn+2n^2=1 tương tự nhé ! Chú ý rằng m+n >= 0 Ok chào bạn. Chúc bạn học tốt. Mình không cần k cũng được, chỉ là một thành phần đi cmt dạo thôi ^^
4 tháng 2 2017

\(\frac{n+4}{n}\)là số nguyên tố 

\(\Rightarrow\frac{n+4}{n}\)là số tự nhiên nên \(\left(n+4\right)⋮n\)

Mà \(n⋮n\)nên để \(\left(n+4\right)⋮n\)thì \(4⋮n\)hay \(n\inƯ\left(4\right)\)

Ư(4) = { 1;2;4 }

\(\Rightarrow n\in\){ 1;2;4 } thì \(\frac{n+4}{n}\) là số tự nhiên

Thay n = 1 vào \(\frac{n+4}{n}\), ta có:

\(\frac{n+4}{n}=\frac{1+4}{1}=\frac{5}{1}=5\) ( nhận )

Thay n = 2 vào \(\frac{n+4}{n}\), ta có:

\(\frac{n+4}{n}=\frac{2+4}{2}=\frac{6}{2}=3\) ( nhận )

Thay n = 4 vào \(\frac{n+4}{n}\), ta có:

\(\frac{n+4}{n}=\frac{4+4}{4}=\frac{8}{4}=2\) ( nhận )

Vậy các số tự nhiên n thỏa mãn đề bài là 1;2;4

21 tháng 7 2015

số (n-2).(n+4) có các ước là 1; n-2; n+ 4 và (n -2) .(n+4)

Để tích trên là số nguyên tố thì hoặc n- 2 = 1 hoặc n + 4 = 1 

+) n - 2 = 1 => n = 3 => (n - 2).(n+4) = 7 là số nguyên tố (Thỏa mãn)

+) n + 4 = 1 => n = - 3 < 0 Loại

Vậy n = 3 thì...

21 tháng 7 2015

- Nếu n chẵn thì (n - 2) chẵn do đó \(\left(n-2\right)\left(n+4\right)\) chia hết cho 2 (là hợp số) \(\Rightarrow\) loại.

- Nếu n lẻ thì :

+) Xét n = 1 thì n - 2 < 0 \(\Rightarrow\) \(\left(n-2\right)\left(n+4\right)\) không thể là số nguyên tố 

+) Xét n = 3 thì n - 2 = 1 ; n + 4 = 7 \(\Rightarrow\left(n-2\right)\left(n+4\right)\) là số nguyên tố.

+) Nếu n > 3 thì n chia 3 dư 1 \(\Rightarrow\) n = 3k + 1 (k \(\in\) N). Do đó \(\left(n-2\right)\left(n+4\right)\) luôn là hợp số.

                                Vậy n = 3 thỏa mãn điều kiện đề bài.