Tam giác ABC có số đo các góc A,B,C tương ứng tỉ lệ với 1;2;3. Tính số đo các góc đó.(?)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{180^0}{6}=30^0\)
Do đó: \(\left\{{}\begin{matrix}\widehat{A}=30^0\\\widehat{B}=60^0\\\widehat{C}=90^0\end{matrix}\right.\)
Trong \(\Delta ABC,\) ta có \(\widehat{A}\) \(+\widehat{B}\) \(+\widehat{C}\) \(=180^o\)
Từ giả thiết, ta có:
\(\dfrac{\widehat{A}}{1};\dfrac{\widehat{B}}{2};\dfrac{\widehat{C}}{3}\)
\(\Rightarrow\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\dfrac{180^o}{6}=30^o\)
Từ đó suy ra: \(\widehat{A}=30^o,B=60^o,\widehat{C}=90^o\)
Vậy.............
Ta có : góc A + góc B + góc C = 180
A : B : C = 3 : 5 : 7
\(\Rightarrow\frac{A}{3}=\frac{B}{5}=\frac{C}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{A}{3}=\frac{B}{5}=\frac{C}{7}=\frac{A+B+C}{3+5+7}=\frac{180}{15}=12\)
\(\Rightarrow\hept{\begin{cases}A=12.3=36\\B=5.12=60\\C=7.12=84\end{cases}}\)
Gọi 3 góc A,B,C lần lượt là x,y,z
Theo bài ra ta có:
x/7=y/5=z/3 mà x+y+z=180 độ
=> x/7=y/5=z/3=x+y+z/7+5+3=180/15=12
x=12*7=84
y=12*5=60
z=13*3=39
Gọi góc ngoài tại 3 đỉnh A,B,C là a,b,c
Ta có a=y+z=96 , b=x+z=120 , c=y+x=144
=>ƯCLN(a,b,c)=24
=>a=96/24=4
b=120/24=5
c=144/25=6
Vậy các góc ngoài tam giác ABC tỉ lệ với 4,5,6
tổng ba góc trong tam giác ABC là : 180o
tổng số phần bằng nhau là : 1+2+3=6 (phần)
số đo góc A là : 180o:6=30o
số đo góc B là : 180o:6.2=60o
số đo góc C là : 180o:6.3=90o