cho a,b,c,d thuộc z tìm a+b=c+d.cmr a^2+b^2+c^2+d^2 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trường hợp : ab = cd + 1
ta có a+ b = c + d
=> b.(a+b) = b(c+d) => a.b + b2 = bc + bd mà ab = cd + 1 nên
cd + 1 + b2 = bc + bd => bc - cd + bd - b2 = 1 => c(b - d) + b.(d - b) = 1 => (c - b)(b - d) = 1 . Vì a, b, c, d nguyên nên c - b và b - d cũng nguyên. do đó c - b = b - d = 1 hoặc c - b = b -d = -1
c - b = b - d => c + d = 2.b Mà c + d = a+ b => 2.b = a+ b => b = a => đpcm
Trường hợp 2: ab = cd - 1: tương tự
Ta có:
\(a+b=c+d\)
\(\Rightarrow d=a+b-c\)
Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)
Mà \(d=a+b-c\) nên ta có:
\(ab-c.\left(a+b-c\right)=1\)
\(\Rightarrow ab-ac-bc+c^2\)
\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)
\(\Rightarrow\left(a-c\right)\left(b-c\right)=1\)
\(\Rightarrow a-c=b-c\)
\(\Rightarrow a=b\)
Thay b = 3a + c vào f(x) ta được:
f(x) = ax3 + (3a+c)x2 + cx + d
⇒ f(1) = a.13 + 3a + c.12+ c.1 + d
= a + 3a + c + c + d
= 4a + 2c + d
= 4a + 2c + d (1)
f(2) = a.23 + 3a + c.22 - c.2 + d
= 8a + 3a + 4c - 2c + d
= 4a + 2c + d (2)
Nhân vế cho vế của (1) và ( 2) ta được
F(1).F(2)=(4a+2c+d).(4a+3c+d)
=\(\left(4a+2c+d\right)^2\)
Vậy f(1).F(2) là số chính phương
bạn xem cái m đầu tiên đi nhé, mình thấy nó sao sao ấy, mình sẽ làm kia cho bạn
đặt
\(\dfrac{a}{b}=\dfrac{c}{d}=n\\ < =>\left\{{}\begin{matrix}a=bn\\c=dn\end{matrix}\right.\)
có
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\\ =\left(\dfrac{bn+b}{dn+d}\right)^2\\ =\left[\dfrac{b\left(n+1\right)}{d\left(n+1\right)}\right]^2\\ =\left(\dfrac{b}{d}\right)^2\left(1\right)\)
và
\(\dfrac{a^2+b^2}{c^2+d^2}\\ =\dfrac{\left(bn\right)^2+b^2}{\left(dn\right)^2+d^2}\\ =\dfrac{b^2n^2+b^2}{d^2n^2+d^2}\\ =\dfrac{b^2\left(n^2+1\right)}{d^2\left(n^2+1\right)}\\ =\dfrac{b^2}{d^2}\\ =\left(\dfrac{b}{d}\right)^2\left(2\right)\)
từ 1 và 2
=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
ko hiểu chỗ nào thì hỏi mình nhé, mình nói cho :)
chúc may mắn