Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho f( x ) = ax3+bx2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c. Chứng minh rằng f (1); f(2) là bình phương của một số nguyên.
Đọc thêm
Toán lớp 7
b) Thay \(b=3a+c\) vào \(f\left(x\right)\) ta được :
\(f\left(x\right)\) \(=ax^{\:3}+\left(3a+c\right)x^2+cx+d\)
\(=ax^{\:3}+3ax^2+cx^2+cx+d\)
\(\Rightarrow f\left(1\right).f\left(2\right)=\left(a.1^3+3a.1^2+c.1^2+c.1+d\right)\left[a.\left(-2\right)^3+3a.\left(-2\right)^2+c\left(-2\right)^2+c\left(-2\right)+d\right]\)
=\(\left(a+3a+c+c+d\right)\left(-8a+12a+4c-2c+d\right)\)
= \(\left(4a+2c+d\right)\left(4a+2c+d\right)\)
= \(\left(4a+2c+d\right)^2\)
Mà a, b , c, d là số nguyên nên f(1) .(f2 ) là bình phương của 1 số nguyên
Câu s bạn tự làm nha
Đề bài sai rồi bn. Hình như f(2) đổi thành f(-2) và f(1).f(2) ms đúng
thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d
thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d
thay b= 3a+c vào 2 đa thức trên sẽ đc:
f(1)= 4a+2c+d và f(-2)= 4a+2c+d
=> f(1).f(-2)= ( 4a+2c+d )2
mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z
vậy f(1).f(-2) là bình phương của một số nguyên
ko tránh khỏi thiếu sót, nếu làm sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi
_Hết_
Đề sai của bạn sai nhé
Hình như f(2) đổi thành f(-2) và f(1).f(2) mới đúng
Thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d
Thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d thay b= 3a+c
Vào 2 đa thức trên sẽ đc: f(1)= 4a+2c+d và f(-2)= 4a+2c+d => f(1).f(-2)= ( 4a+2c+d )\(^2\)
Mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z
Vậy f(1).f(-2) là bình phương của một số nguyên
Do b=3a+c
Ta có:f(1)=a+b+c+d=4a+2c+d
f(-2)=-8a+4b-2c+d=-8a+4.(3a+c)-2c+d=-8a+12a+4c-2c+d=4a+2c+d
=>f(1).f(-2)=(4a+2c+d)2
=>f(1).f(-2) là bình phương của 1 số nguyên
Thay b = 3a + c vào f(x) ta được:
f(x) = ax3 + (3a+c)x2 + cx + d
⇒ f(1) = a.13 + 3a + c.12+ c.1 + d
= a + 3a + c + c + d
= 4a + 2c + d
= 4a + 2c + d (1)
f(2) = a.23 + 3a + c.22 - c.2 + d
= 8a + 3a + 4c - 2c + d
= 4a + 2c + d (2)
Nhân vế cho vế của (1) và ( 2) ta được
F(1).F(2)=(4a+2c+d).(4a+3c+d)
=\(\left(4a+2c+d\right)^2\)
Vậy f(1).F(2) là số chính phương
Bài này đội tuyển toán help mik với