Tìm x sao cho: x2+5x+6 Lớn hơn hoặc bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>(x-4)(x-3)(x-1)>0
=>1<x<3 hoặc x>4
c: =>(2x-1)(x-1)(2x-3)<0
=>x<1/2 hoặc 1<x<3/2
a) Vì 5x >= 0
=> x >= 0
=> 2x - 3 = 5x
=> 2x - 5x = 3
=> -3x = 3
=> x = -1
b) Vì x + 2 lớn hơn hoặc bằng 0
=> x = x + 2
=> x - x = 2
=> 0 = 2 ( loại )
Bổ sung câu b)
TH2 :
x = -x - 2
x + x = -2
2x = -2
=> x = -1
Vậy, x = -1
a, (5x+7)(2x-1) <0
<=> \(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}5x< 7\\2x< 1\end{cases}}\)
<=> \(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}}\)<=> ..................
(5x+7)(2x-1) =0
<=> \(\orbr{\begin{cases}5x+7=0\\2x-1=0\end{cases}}\)<=> ..................
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
\(x^2+5x+6\ge0\)
\(\Leftrightarrow x^2+2x+3x+6\ge0\)
\(\Leftrightarrow x\left(x+2\right)+3\left(x+2\right)\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ge0\\x+3\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}x+2\le0\\x+3\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\ge-3\end{cases}}\) hoặc \(\hept{\begin{cases}x\le-2\\x\le-3\end{cases}}\)
Vậy \(x\ge-2\) hoặc \(x\le-3\)
\(x^2+5x+6\ge0\)
<=> \(\left(x+2\right)\left(x+3\right)\ge0\)
TH1: \(\hept{\begin{cases}x+2\ge0\\x+3\ge0\end{cases}}\)<=> \(\hept{\begin{cases}x\ge-2\\x\ge-3\end{cases}}\)<=> \(x\ge-2\)
TH2: \(\hept{\begin{cases}x+2\le0\\x+3\le0\end{cases}}\)<=> \(\hept{\begin{cases}x\le-2\\x\le-3\end{cases}}\)<=> \(x\le-3\)
Vậy....