K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{70}{3}\left(\frac{39}{30}+\frac{39}{42}\right)-\frac{246}{7}\div\left(\frac{41}{56}+\frac{41}{72}\right)\)

\(=\frac{70}{3}\left(\frac{13}{10}+\frac{13}{14}\right)-\frac{246}{7}\div\left(\frac{41}{7\cdot8}+\frac{41}{8\cdot9}\right)\)

\(=\frac{70}{3}\left(1+\frac{3}{10}+1-\frac{1}{14}\right)-\frac{246}{7}\div\left(\frac{40+1}{7\cdot8}+\frac{40+1}{8\cdot9}\right)\)

\(=\frac{70}{3}\left[\left(1+1\right)+\left(\frac{3}{10}-\frac{1}{14}\right)\right]-\frac{246}{7}\div\left(\frac{5}{7}+\frac{1}{7\cdot8}+\frac{5}{9}+\frac{1}{8\cdot9}\right)\)

\(=\frac{70}{3}\left(2+\frac{8}{35}\right)-\frac{246}{7}\div\left[\frac{5}{7}+\frac{5}{9}+\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)\right]\)

\(=\frac{70}{3}\cdot\frac{78}{35}-\frac{246}{7}\div\left[\frac{5}{7}+\frac{5}{9}+\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\right]\)

\(=\frac{35\cdot2\cdot26\cdot3}{3\cdot35}-\frac{246}{7}\div\left(\frac{5}{7}+\frac{5}{9}+\frac{1}{7}-\frac{1}{9}\right)\)

\(=52-\frac{246}{7}\div\left[\left(\frac{5}{7}+\frac{1}{7}\right)+\left(\frac{5}{9}-\frac{1}{9}\right)\right]\)

\(=52-\frac{246}{7}\div\left(\frac{6}{7}+\frac{4}{9}\right)\)

\(=52-\frac{246}{7}\div\frac{82}{63}\)

\(=52-\frac{82\cdot3\cdot9\cdot7}{7\cdot82}\)

\(=52-27=25\)

\(\frac{57}{20}-\frac{26}{15}+\frac{139}{20}\div3\)

\(=\frac{57}{20}-\frac{26}{15}+\frac{139}{60}\)

\(=\frac{171}{60}-\frac{104}{60}+\frac{139}{60}=\frac{103}{30}\)

\(\frac{39}{4}+\frac{2}{3}\left(11-\frac{23}{4}\right)\)

\(=\frac{39}{4}+11\cdot\frac{2}{3}-\frac{23}{4}\cdot\frac{2}{3}\)

\(=\frac{39}{4}+\frac{22}{3}-\frac{56}{12}\)

\(=\frac{119}{12}+\frac{88}{12}-\frac{56}{12}=\frac{151}{12}\)

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2002}\right)\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2001}{2002}\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)

\(=\frac{1\cdot2\cdot3\cdot...\cdot2001\cdot2002\cdot2003}{2\cdot3\cdot4\cdot...\cdot2002\cdot2003\cdot2004}=\frac{1}{2004}\)

16 tháng 12 2017

\(\left(x+\frac{1}{20}\right)+\left(x+\frac{1}{30}\right)+\left(x+\frac{1}{42}\right)+\left(x+\frac{1}{56}\right)=\frac{1}{8}\)

Ta mở ngoặc rồi tính như sau:

\(x+\frac{1}{20}+x+\frac{1}{30}+x+\frac{1}{42}+x+\frac{1}{56}=\frac{1}{8}\)

\(\Leftrightarrow4x+\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)=\frac{1}{8}\)

\(\Leftrightarrow4x+\frac{1}{8}=\frac{1}{8}\)

\(\Leftrightarrow4x=0\)

Vậy \(x=0\)

16 tháng 12 2017

thaks bạn nha

19 tháng 6 2018

Giải:

\(\dfrac{1}{3}-\dfrac{1}{12}-\dfrac{1}{20}-...-\dfrac{1}{90}-\dfrac{1}{110}=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{1}{1.3}-\dfrac{1}{3.4}-\dfrac{1}{4.5}-...-\dfrac{1}{9.10}-\dfrac{1}{10.11}=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{-1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\right)=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{-1}{2}\left(\dfrac{1}{1}-\dfrac{1}{11}\right)=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{-1}{2}.\dfrac{10}{11}=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{-5}{11}=x-\dfrac{5}{13}\)

\(\Leftrightarrow\dfrac{-5}{11}+\dfrac{5}{13}=x\)

\(\Leftrightarrow x=\dfrac{-10}{143}\)

Vậy ...

19 tháng 6 2018

Giải đẳng cấp nhỉ @Hắc Hường

17 tháng 6 2017

\(x=\frac{617}{1300}\)

17 tháng 6 2017

\(x=\frac{617}{1300}\)

chúc học giỏi

23 tháng 7 2020

Thiết nghĩ đề sai bạn ơi

22 tháng 7 2017

c, Ta có: \(2.|\dfrac{1}{2}x - \dfrac{1}{3}| - \dfrac{3}{2} = \dfrac{1}{4}\)

\(\Rightarrow\) \(2.|\dfrac{1}{2}x - \dfrac{1}{3}| = \dfrac{7}{4}\)

\(\Rightarrow\) \(|\dfrac{1}{2}x - \dfrac{1}{3}| = \dfrac{7}{8}\)

\(\Rightarrow\) \(\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{7}{8}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{29}{24}\\\dfrac{1}{2}x=-\dfrac{13}{24}\end{matrix}\right.\)

\(\Rightarrow\) \(\left[{}\begin{matrix}x=\dfrac{29}{24}\\x=-\dfrac{13}{12}\end{matrix}\right.\)