Bài 1: Tính nhanh tổng sau:
4/15+ 4/35+ 4/63+ 4/99 + 4/143
Ai nhanh đúng mk tick nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{12}+\frac{4}{35}+\frac{4}{63}+\frac{4}{99}\)
\(=2.\left(\frac{2}{12}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)\)
\(=2.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=2.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=2.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=2.\left(\frac{11}{33}-\frac{3}{33}\right)\)
\(=2.\frac{8}{33}\)
\(=\frac{16}{33}\)
Tham khảo nhé~
4/15 + 4/35 + 4/63 + 4/99 + 4/143
= 8/21 + 8/77 + 4/143
= 16/33 + 4/143
= 20/39
\(\frac{4}{15}+\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}\)
\(=2\times\left(\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{11\times13}\right)\)
\(=2\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=2\times\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=2\times\frac{10}{39}\)
\(=\frac{20}{39}\)
1+(-2)+3+(-4)+.......+19+(-20)
=(1+(-2))+(3+(-4))+....+(19+(-20)) có 10 nhóm như vậy
=(-1)+(-1)+.....+(-1)
=-10
a) 1 + (-2) + 3 + (-4) + ... + 19 + (-20)
= 1 - 2 + 3 - 4 + ... + 19 - 20
= ( 1 + 3 + ... + 19 ) - ( 2 + 4 + ... + 20 )
Số số hạng VT : ( 19 - 1 ) : 2 + 1 = 10 ( số )
Tổng VT = ( 19 + 1 ) . 10 : 2 = 100
Số số hạng VP : ( 20 - 2 ) : 2 + 1 = 10 ( số )
Tổng VP là : ( 20 + 2 ) x 10 : 2 = 110
Ta có biểu thức :
100 - 110
= -10
1-2-3+4+5-....+96+97-98-99+100
=(1-2-3+4)+....+(97-98-99+100)
=0+.........+0
=0
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 96 + 97 - 98 - 99 + 100
Ta thấy tổng trên có 100 số hạng. Ta chia tổng thành tường nhóm, mỗi nhóm có 4 số hạng như sau:
1 - 2 - 3 + 4 + 5 - 6 - 7 - 8 + ... + 96 + 97 - 98 - 99 + 100
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 97 - 98 - 99 + 100 )
= 0 + 0 + ... + 0
= 0
\(B=\dfrac{4}{3}+\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{143}\)
\(=4(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143})\)
vì \(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143}<\dfrac{1}{2}\) nên \(4(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143})<4*\dfrac{1}{2}=2\Rightarrow B<2\)
\(\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+\frac{64}{63}+\frac{100}{99}\\ =\frac{2.2}{1.3}+\frac{4.4}{3.5}+\frac{6.6}{5.7}+\frac{8.8}{7.9}+\frac{10.10}{9.11}\)
\(\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+\frac{64}{65}+\frac{100}{99}\)
\(1+\frac{1}{3}+1+\frac{1}{15}+1+\frac{1}{35}+1+\frac{1}{65}+1+\frac{1}{99}\)
\(\left(1+1+1+1+1\right)+\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{65}+\frac{1}{99}\right)\)
\(\frac{60}{11}\)
B=2/1.3 + 2/3.5 + 2/5.7 +...+ 2/299.301
B=1-1/3+1/3-1/5+1/5-1/7+...+1/299-1/301=1-1/301=300/301
\(Ta có: \frac{2}{3}=\frac{1}{1}-\frac{1}{3}\);
\(\frac{2}{15}=\frac{1}{3}-\frac{1}{5}\);
\(\frac{2}{35}=\frac{1}{5}-\frac{1}{7}\) ; ... ; \(\frac{2}{89999}=\frac{1}{299}-\frac{1}{301}\).
=> B= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{299}-\frac{1}{301}\)
=> B=\(\frac{1}{1}-\frac{1}{301}\)
=> B=\(\frac{300}{301}\)
BÀI 1:
a) \(\frac{4}{5}+\frac{3}{8}+\frac{1}{4}\)
\(=\frac{32}{40}+\frac{15}{40}+\frac{10}{40}\)
\(=\frac{32+15+10}{40}\)\(=\frac{57}{40}\)
b) \(\frac{5}{9}+\frac{2}{3}+\frac{1}{2}\)
\(=\frac{10}{18}+\frac{12}{18}+\frac{9}{18}\)
\(=\frac{10+12+9}{18}=\frac{31}{18}\)
4/15 + 4/35 + 4/63 + 4/99 + 4/143 = 20/39