K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

B A C O D E F S M N S'

1) Theo t/c góc tạo bởi tia tiếp và dây cung: \(\widehat{BCA}=\widehat{BAD}\). Dễ có \(\widehat{BCA}=\widehat{BAC}=30^0\)

\(\Rightarrow\widehat{BAD}=30^0\)\(\Rightarrow\widehat{BAC}+\widehat{BAD}=60^0\Rightarrow\widehat{DAC}=60^0\). Đồng thời \(\widehat{BAC}=\widehat{BAD}\)

=> AB là tia phân giác trong tam giác ADC

Xét \(\Delta\)ADC có: \(\widehat{DAC}=60^0;\widehat{DCA}=\widehat{BCA}=30^0\)

=> \(\Delta\)ADC vuông tại D. Hay \(\Delta\)ADC nửa đều => \(\frac{AD}{AC}=\frac{1}{2}\)

Ta có: AB là phân giác trong tam giác ADC (cmt) \(\Rightarrow\frac{AD}{AC}=\frac{DB}{CB}=\frac{1}{2}\Rightarrow\frac{DB}{DC}=\frac{1}{3}\)

2) Dễ thấy \(\widehat{ABD}=\widehat{BAC}+\widehat{BCA}=60^0\). Xét \(\Delta\)ADB:

\(\widehat{ADB}=90^0\)(cmt); \(\widehat{ABD}=60^0\)=> \(\Delta\)ADB nửa đều => BD = 1/2 AB

Áp dụng ĐL Pytagore cho \(\Delta\)ADB nửa đều: 

\(AD^2=AB^2-BD^2=AB^2-\frac{1}{4}.AB^2=\frac{3}{4}.AB^2\)\(\Leftrightarrow AD=\frac{\sqrt{3}}{2}.AB\)

\(\Leftrightarrow\frac{AB}{AD}=\frac{2}{\sqrt{3}}\)(1)

Tương tự với tam giác ANB nửa đều: \(\frac{AB}{AN}=\frac{2}{\sqrt{3}}\Leftrightarrow\frac{AB}{2AN}=\frac{1}{\sqrt{3}}\)

\(\Rightarrow\frac{AB}{AC}=\frac{1}{\sqrt{3}}\)(2)

Cộng (1) với (2) \(\Rightarrow\frac{AB}{AD}+\frac{AB}{AC}=\frac{3}{\sqrt{3}}=\sqrt{3}\Leftrightarrow\frac{1}{AD}+\frac{1}{AC}=\frac{\sqrt{3}}{AB}\)(đpcm).

3) Gọi giao điểm của NE với AO là S; MF với AO là S'. Ta đi c/m S trùng với S' .

Dễ thấy: \(\widehat{OBC}=180^0-\widehat{ABD}-\widehat{ABN}=60^0\)\(\Rightarrow\widehat{OCB}=60^0\)

Mà \(\widehat{ABD}=60^0\Rightarrow\widehat{OCB}=\widehat{ABD}\). Do 2 góc này đồng vị nên AB // OC

Hay BE // OC \(\Rightarrow\frac{DB}{CB}=\frac{DE}{OE}\)(ĐL Thales) . Mà \(\frac{DB}{CB}=\frac{1}{2}\)(câu b)

\(\Rightarrow\frac{DE}{OE}=\frac{1}{2}\). Lại có: \(\frac{DE}{OE}=\frac{BE}{AE}\Rightarrow\frac{BE}{AE}=\frac{1}{2}\)(Hệ quả ĐL Thales)

Tứ giác ABCO có: AB // OC; AO // OB (Cùng vuông góc AD); AC vuông BO

=> Tứ giác ABCO là hình thoi. N là trung điểm AC => N cũng là trung điểm BO => \(\frac{ON}{BN}=1\)

Nhận thấy \(\Delta\)ABO có: E thuộc AB; N thuộc OB; NE cắt AO ở S

\(\Rightarrow\frac{BE}{AE}.\frac{ON}{BN}.\frac{SA}{SO}=1\)(ĐL Menelaus)

Thay \(\frac{BE}{AE}=\frac{1}{2};\frac{ON}{BN}=1\Rightarrow\frac{SA}{SO}.\frac{1}{2}=1\Leftrightarrow\frac{SA}{SO}=2\Leftrightarrow\frac{SA}{AO}=2\)(*)

Áp dụng hệ quả ĐL Thales: \(\frac{OF}{EF}=\frac{OC}{AE}=\frac{AB}{AE}\)(Do OC=AB)

Lại có: \(\frac{BE}{AE}=\frac{1}{2}\Rightarrow\frac{AB}{AE}=\frac{3}{2}\)\(\Rightarrow\frac{OF}{EF}=\frac{3}{2}\)

Vì \(\frac{BE}{AB}=\frac{1}{3}\Rightarrow\frac{BE}{\frac{1}{2}.AB}=\frac{2}{3}\Rightarrow\frac{BE}{BM}=\frac{2}{3}\Rightarrow\frac{EM}{BM}=\frac{1}{3}\). Mà BM=AM

\(\Rightarrow\frac{EM}{AM}=\frac{1}{3}\). Ta áp dụng ĐL Menelaus với \(\Delta\)AEO:

\(\frac{OF}{EF}.\frac{BE}{EM}.\frac{S'A}{S'O}=1\). Thế \(\frac{EM}{AM}=\frac{1}{3};\frac{OF}{EF}=\frac{3}{2}\)(cmt)

\(\Rightarrow\frac{S'A}{S'O}.\frac{1}{3}.\frac{3}{2}=1\Rightarrow\frac{S'A}{S'O}=2\Rightarrow\frac{S'A}{AO}=2\)(**)

Từ (*) và (**) suy ra \(SA=S'A\). Mà 3 điểm A;S;S' thẳng hàng

Nên S trùng với S' => 3 đường AO;MF;NE gặp nhau tại 1 điểm (đpcm).

2 tháng 8 2018

Tỉ số \(\frac{DB}{CB}=\frac{1}{2}\) được lấy từ ý 1) nhé, quen tay nên gõ nhầm.

23 tháng 6 2017

Đường tròn

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0
18 tháng 3 2022

sao nhiều bạn biết làm mà không giúp bạn này z
chắc bạn ấy đang cần gấp lắm á, giúp bạn ấy di nào!!!

18 tháng 3 2022

a) Xét ∆ABD và ∆ACD, ta có
AB=AC(GT)
<ABD=<ACD=90°
AD cạnh chung
⟹ ∆ABD=∆ACD(c.h-cgv) ⟹<BAD=<CAD( 2 góc tương ứng)
Xét ∆ABC và ∆ACD, ta có:
AB=AC(GT)
<BAD=<CAD(CMT)
AC cạnh chung
⟹ ∆ABC=∆ACD (c.g.c)
b) Ta có : BD=DC(Vì ∆ABD=∆ACD (CM ở a)) <1>
                BC=DC( Vì ∆ABC=∆ACD(CM ở a)) <2>
Từ <1> và <2> 
⟹ BD=DC=BC
⟹ ∆BDC là tam giác đều
c) Ta có: AD>BD(Vì AD là cạnh huyền tương ứng của tam giác vuông ABD)
               BC=BD( Vì ∆BDC là tam giác đều (CM ở b))⟹2BC>BD
⟹ 2BC=+AD>AB+BD