Tìm một số có 4 chữ số biết rằng khi chia số đó cho 121 dư 58, khi chia cho 122 dư 42.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đó chia cho \(121\)dư \(58\)nên nó có dạng \(121\times a+58\).
Số đó chia cho \(122\)dư \(42\)nên nó có dạng \(122\times b+42\).
Do cùng số bị chia \(a\ge b\).
Ta có: \(121\times a+58=122\times b+42\)
\(\Leftrightarrow121\times\left(a-b\right)+16=b\)
- Nếu \(a-b=0\Rightarrow b=16\)
Khi đó số cần tìm là: \(122\times16+42=1994\).
- Nếu \(a-b\ge1\)thì \(b\ge16+121\times1=137\)
Khi đó số cần tìm sẽ không là số có \(4\)chữ số.
Vậy số cần tìm là \(1994\).
Gọi số ần tìm là a \(\hept{\begin{cases}a:48dư43&a:40&dư35\end{cases}}=>\hept{\begin{cases}a+5⋮48\\a+5⋮40\end{cases}}\)
=> a+5 \(\in\)BC(48,40)
Mà 48 = 243
40 = 235
BCNN (48,40) = 24.3.5= 16.3.5 = 240
lại có BC(40,48) = B(240) =\([0;240;240;720;960;1200;1440;...]\)
mà a + 5 có 4 chữ số bé hơn 1300 => a+5 = 1200
a = 1200 - 5
a = 1195
Gọi số cần tìm là n, 1000 ≤ n ≤ 9999 (1). Vì n ⋮ 121 dư 58 => Đặt n = 121a + 58 (a ∊ N*) ; Vì n ⋮ 122 dư 42 => Đặt n = 122b + 42 (b ∊ N*) => 121a + 58 = 122b + 42 => 121a - 121b = b - 16 => 121(a - b) = b - 16 => b - 16 ⋮ 121 => b - 16 ∊ B(121) = {0;121;...} (2). Để n nhỏ nhất và có 4 chữ số thì 1000 ≤ 122b + 42 ≤ 9999 => 958 ≤ 122b ≤ 9957 => 8 ≤ b ≤ 81 => 0 ≤ b - 16 ≤ 65 (3). Từ (1)(2)(3) => b - 16 = 0 => b = 16 => n = 122.16 + 42 = 1994. Vậy số cần tìm là 1994