Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm một số có 3 chữ số , biết rằng số đó khi chia cho 7 và 11 đều dư 5 , và khi chia cho 5 thì dư 2.
nguyễn hải đăng: theo mình k thể kết luận vậy được.
mình giải thế này: gọi số cần tìm là x
ta sẽ có hệ sau: x đồng dư với 5 (mod 7)
x đồng dư với 5 (mod 11)
x đồng dư với 2 (mod 5)
ta giải hệ 2 pt đầu tiên: x đồng dư với 5 (mod 7) (1)
x đồng dư với 5 (mod 11) (2)
từ pt (2) đặt x=5+11t (với t thuộc z) thế vào pt(1) ta được
5+11t đồng dư 5 (mod 7)
<=> 11t đồng dư 0 (mod 7)
<=> t đồng dư 0 (mod 7)
đặt t=7u => x=5+11t= 5+11*7u= 5+77u
=> x đồng dư với 5 (mod 77) kết hợp với pt (3) giải hệ x đồng dư 2 (mod 5)
x đồng dư 5 (mod 77)
giải tương tự như trên ta được x đồng dư 82 (mod 385)
vậy kết luận: x đồng dư với 82 (mod 385).
bài này mình học rồi nên đúng đấy
Gọi số cần tìm là A
vì số đó cộng 2 chia hết cho 5 nên số đó chia 5 dư 3
vì số đó cộng 4 chia hết cho 7 nên số đó chia 7 dư3
=>A:4;5;7 đều dư 3
=>A-3 chia hết cho 4;5;7
mà số nhỏ nhất có 3 chữ số chia hết cho 4;5;7 là 140
Thử lại 143 :4=35(dư3)
143:5=28(dư3)
143:7=20(dư 3)
(thỏa mãn đầu bài)
Vậy số cần tìm là 143
:)))^^^^
Vì 13 x 7 = 91
Nên số cần tìm là : 91 x 2 + 1 = 183
183 chia 8 thì có số dư là : 183 - 22 x 8 = 7
suy ra số đó +1 chia hết cho 2;3;4;5
mà số nhỏ nhất chia hết cho 2;3;4;5 là 60
suy ra số cần tìm là: 60 - 1 =59
nhớ bấm đúng cho mình nhé!