Cho a, b, c>0 cm
a^2/(b^2+c^2)+b^2/(c^2+a^2)+c^2/(a^2+b^2)>=a/(b+c)+b/(c+a)+c/(a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^2}{a^2-b^2-c^2}=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}=\dfrac{a^2}{\left(a-b\right)\left(-c\right)-c^2}=\dfrac{a^2}{c\left(b-a-c\right)}=\dfrac{a^2}{2bc}\\ \Leftrightarrow M=\sum\dfrac{a^2}{a^2-b^2-c^2}=\sum\dfrac{a^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}\\ \Leftrightarrow M=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{2abc}=0\)
Ta có: \(a+b+c=0\Rightarrow a^2=\left(b+c\right)^2\Rightarrow a^2-2bc=b^2+c^2\)
\(\Rightarrow a^2-b^2-c^2=a^2-a^2+2bc=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(A=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}\)
Lại có: \(a+b+c=0\Rightarrow-a=b+c\)
\(\Rightarrow-a^3=b^3+c^3+3bc\left(b+c\right)\)
\(\Rightarrow a^3+b^3+c^3=-3bc\left(b+c\right)=3abc\left(b+c=-a\right)\)
=> \(A=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)