Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ mà ?
Theo BĐT Cauchy cho 2 số ta có :
\(b^2+c^2\ge2bc< =>\frac{a^2}{b^2+c^2}\le\frac{a^3}{2abc}\)
Tương tự ta được :\(\frac{b^2}{c^2+a^2}\le\frac{b^3}{2abc}\) ; \(\frac{c^2}{a^2+b^2}\le\frac{c^3}{2abc}\)
Cộng theo vế các bất đẳng thức cùng chiều :
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Vậy ta có điều phải chứng minh
đây là toán lớp 1 à bạn , lớp 1 chưa học số mũ đâu nhé
\(< =>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(< =>a^2-2ab+b^2+a^2-2ca+c^2+b^2-2bc+c^2=0\)
\(< =>\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
có \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(a-c\right)^2\ge0\\\left(b-c\right)^2\ge0\end{matrix}\right.\) dấu"=" xảy ra<=>a=b=c
Ta có: \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Suy ra: a=b=c
đề bài sai thử thay a=b=c=1 vào biểu thức
\(=>1+1+1=3\ne2.3=6\)