Cho tam giác ABC có D là đường phân giác trong. Ở ngoài tam giác ABC, vẽ tia CX sao cho góc BCX = góc BAD. Gọi I là giao điểm của CX và AD. CMR
a, tam giác ADB đồng dạng tam giác CDI
b, AD/AC = AB/AI
c, AD^2=AD×AC - BD×BC
Mik cần gấp lắm, trog trưa mai là phải có oy -.- Mong các bn giúp mik :<
a, Xét tam giác ADB và tam giác CDI có:
góc ADB = góc CDI (đối đỉnh)
góc BAD = góc DCI (gt)
Do đó: Tam giác ADB đồng dạng với tam giác CDI (g.g) (1)
Suy ra: góc ABD = góc DIC
b, Tam giác ADB đồng dạng với tam giác ACI (g.g) (2)
Suy ra: AD/AC = AB/AI
c, Từ (1),ta thấy: AD/CD = DB/DI nên AD.DI = BD.BC
Từ (2),ta có: AD/AC = AB/AI nên AD.AI = AB.AC
Do đó: AD(AI-DI) = AB.AC - BD.BC
AD^2 = AB.AC -BD.BC
Bài bạn đưa ra hơi khó đấy.Chúc bạn học tốt.
Cảm ơn bn nhiều lắm :3