K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)

29 tháng 4 2019

Bài 1: <Cho là câu a đi>:

a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\) 

\(\rightarrow x+1=50\rightarrow x=49\) 

Vậy x = 49.

29 tháng 1 2019

\((x-2)^2\cdot(y-1)\varepsilonƯ(8)=[1,2,4,8,-1,-2,-4,-8]\)8

ta có bảng sau

\((x-2)^2\)1248-1-2-4-8
\(\left(y-1\right)\)8421-8-4-2-1
\(x\)3       
y        

 x và y còn lại tự tính nhé

sao tôi lại thấy tên tôi nhỉ ?

12 tháng 9 2020

Machi!Rồi bạn trong đội tuyển văn không?

9 tháng 7 2019

Ta có \(y=\frac{5x+3}{xy\left(x+y\right)+x+y+\left(x+y\right)^2}=\frac{5x+3}{\left(x+y\right)\left(xy+1+x+y\right)}=\frac{5x+3}{\left(x+y\right)\left(y+1\right)\left(x+1\right)}\)

\(x,y\in Z\)

=> \(\frac{5x+3}{x+1}=5+\frac{-2}{x+1}\)là số nguyên

=> \(x+1\in\left\{\pm1;\pm2\right\}\)

=> \(x\in\left\{-3;-2;0;1\right\}\)

+ x=-3

=> \(y=\frac{6}{\left(y-3\right)\left(y+1\right)}\)

=> \(y^3-2y^2-3y-6=0\)(không có giá trị nguyên nào của y tm)

+ x=-2

=> \(y=\frac{7}{\left(y-2\right)\left(y+1\right)}\)=> \(y^3-y^2-2y-7=0\)(không có gt y nguyên tm)

+ \(x=0\)

=> \(y=\frac{3}{y\left(y+1\right)}\)=> \(y^3+y^2-3=0\)(không có gt y nguyên tm)

+ x=1

=> \(y=\frac{4}{\left(y+1\right)\left(y+1\right)}\)=> \(y^3+2y^2+2y-4=0\)(loại)

Vậy không có giá trị x,y nguyên TM đề bài

8 tháng 3 2020

\(x^2+y+\frac{3}{4}\ge x^2+\frac{1}{4}+y+\frac{1}{2}\ge2\sqrt{x^2\cdot\frac{1}{4}}+\left(y+\frac{1}{2}\right)\ge x+y+\frac{1}{2}\)

\(\Rightarrow VT\ge\left(x+y+\frac{1}{2}\right)^2=\left[\left(x+\frac{1}{4}\right)+\left(y+\frac{1}{4}\right)\right]^2\ge4\left(x+\frac{1}{4}\right)\left(y+\frac{1}{4}\right)\)

\(=\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\)

Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

\(PT\Leftrightarrow x^2y^2+y^3+x^3+\frac{3}{4}\left(x^2+y^2\right)+xy+\frac{3}{4}\left(x+y\right)+\frac{9}{16}=4xy+x+y+\frac{1}{4}.\)

\(\Leftrightarrow x^2y^2+\left(x+y\right)^3-3xy\left(x+y\right)+\frac{3}{4}\left[\left(x+y\right)^2-2xy\right]+\frac{1}{4}\left(x+y\right)-3xy+\frac{5}{16}=0\)

Đặt \(x+y=a,xy=b\)

\(\Rightarrow b^2+a^3-3ab+\frac{3}{4}\left(a^2-2b\right)+\frac{a}{4}-3b+\frac{5}{16}=0\)

\(\Leftrightarrow16b^2+16a^3-48ab+12a^2-24b+4a-48b+5=0\)

\(\Leftrightarrow16b^2+16a^3-48ab+12a^2-72b+4a+5=0\)

Đến đây phân tích thành nhân tử hay sao ấy, chưa nghĩ ra :P