K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Ta có \(y=\frac{5x+3}{xy\left(x+y\right)+x+y+\left(x+y\right)^2}=\frac{5x+3}{\left(x+y\right)\left(xy+1+x+y\right)}=\frac{5x+3}{\left(x+y\right)\left(y+1\right)\left(x+1\right)}\)

\(x,y\in Z\)

=> \(\frac{5x+3}{x+1}=5+\frac{-2}{x+1}\)là số nguyên

=> \(x+1\in\left\{\pm1;\pm2\right\}\)

=> \(x\in\left\{-3;-2;0;1\right\}\)

+ x=-3

=> \(y=\frac{6}{\left(y-3\right)\left(y+1\right)}\)

=> \(y^3-2y^2-3y-6=0\)(không có giá trị nguyên nào của y tm)

+ x=-2

=> \(y=\frac{7}{\left(y-2\right)\left(y+1\right)}\)=> \(y^3-y^2-2y-7=0\)(không có gt y nguyên tm)

+ \(x=0\)

=> \(y=\frac{3}{y\left(y+1\right)}\)=> \(y^3+y^2-3=0\)(không có gt y nguyên tm)

+ x=1

=> \(y=\frac{4}{\left(y+1\right)\left(y+1\right)}\)=> \(y^3+2y^2+2y-4=0\)(loại)

Vậy không có giá trị x,y nguyên TM đề bài

16 tháng 1 2018

Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!

16 tháng 1 2018

Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ

24 tháng 4 2020

hpt \(\Leftrightarrow\)\(\hept{\begin{cases}5\left(x+y\right)^2+\frac{2}{\left(x+y\right)^2}-12xy=\frac{251}{5}\\\frac{\left(x+y\right)^2+1}{x+y}=5-\left(x-y\right)\end{cases}}\) (*) 

đặt \(\left(a;b\right)=\left(x+y;x-y\right)\)\(\left(a\ne0\right)\)

hệ (*) \(\Leftrightarrow\)\(\hept{\begin{cases}5a^2+\frac{2}{a^2}-3\left(a^2-b^2\right)=\frac{251}{5}\\b=5-\frac{a^2+1}{a}\end{cases}}\Leftrightarrow\hept{\begin{cases}25a^4-150a^3+154a^2-150a+25=0\left(1\right)\\b=5-\frac{a^2+1}{a}\end{cases}}\)

pt (1) \(\Leftrightarrow\)\(\orbr{\begin{cases}a=\frac{1}{5}\Rightarrow b=\frac{-1}{5}\\a=5\Rightarrow b=\frac{-1}{5}\end{cases}}\)\(\Rightarrow\)\(\left(x;y\right)=\left\{\left(0;\frac{1}{5}\right);\left(\frac{12}{5};\frac{13}{5}\right)\right\}\)

10 tháng 7 2019

\(A=x^6+2x\left(x^2+y\right)+x^2+y^2+26\) 

   \(=x^6+2x^2+2xy+x^2+y^2+26\) 

    \(=x^6+2x^2+\left(x+y\right)^2+26\ge26\forall x;y\) 

Dấu "=" xảy ra<=> \(x=0\) và \(\left(x+y\right)^2=0\Rightarrow y=0\) 

Vậy Amin =26 tại x=y=0

11 tháng 7 2019

B=\(y^2-2xy+3x^2+2y-14x+1949\)

 \(=\left(y^2-2xy+x^2+2y-2x+1\right)+\left(2x^2-12x+18\right)+1930\)

 \(=\left(x-y-1\right)^2+2\left(x-3\right)^2+1930\)

  \(\ge1930\)

MinB=1930 khi \(\hept{\begin{cases}x=y+1\\x=3\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi

8 tháng 12 2019

e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)

PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)

Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)

Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

8 tháng 12 2019

Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new

e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ

thanks nhiều!

Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)

Tương tự  \(1+y^2=\left(x+y\right)\left(y+z\right)\)

\(1+z^2=\left(x+z\right)\left(y+z\right)\)

Thay vào A ta được

\(P=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

=2(xy+xz+yz)=2

17 tháng 6 2019

\(b,VT=VP\)

\(\Leftrightarrow\frac{x}{xy+yz+zx+x^2}+\frac{y}{xy+yz+zx+y^2}+\frac{z}{xy+yz+zx+z^2}\)

                                                                                                                                                                                                                                                                                    \(=\frac{2xyz}{\sqrt{\left(xy+yz+zx+x^2\right)\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}}\)

\(\Leftrightarrow\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)

                                                                                \(=\frac{2xyz}{\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(y+x\right)\left(z+x\right)\left(y+z\right)}}\)

\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\Leftrightarrow xy+xz+xy+yz+xz+yz=2xyz\)

\(\Leftrightarrow2=2xyz\)

\(\Leftrightarrow xyz=1\)

Đù =)))