So sánh:
\(S=\dfrac{1}{\sqrt{1\cdot2012}}+\dfrac{1}{\sqrt{2\cdot2011}}+...+\dfrac{1}{k\sqrt{2012-k+1}}+...+\dfrac{1}{\sqrt{2012\cdot1}}\text{ }và\text{ }\dfrac{4024}{2013}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Thế vô bài toán ta được
\(A=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2012}}-\dfrac{1}{\sqrt{2013}}=1-\dfrac{1}{\sqrt{2013}}\)
Ta có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n.\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
Sau đó thế vô bài toán và làm tiếp như bác ctv là ta hoàn thành bài toán!
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge2011\\y\ge2012\\z\ge2013\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-2011}\ge0\\b=\sqrt{y-2012}\ge0\\c=\sqrt{z-2013}\ge0\end{matrix}\right.\) ta có :
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}+\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}=0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow a=b=c=2\Leftrightarrow\left\{{}\begin{matrix}x=2015\\y=2016\\z=2017\end{matrix}\right.\)
\(M=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2012}+\sqrt{2013}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2013}-\sqrt{2012}\)
\(=\sqrt{2013}-1\)
2 = 1.2 => \(\dfrac{1}{2}\) = \(\dfrac{1}{1.2}\) = 1 - \(\dfrac{1}{2}\)
TT \(\dfrac{1}{6}=\dfrac{1}{2}-\dfrac{1}{3}\)
.................
=> VT = 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{\sqrt{2012-x}+2012}{\sqrt{2012-x}+2013}\)
Đặt \(\sqrt{2012-x}+2012=y\)
=> 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{y}{y+1}\)
=> \(\dfrac{x}{x+1}\) = \(\dfrac{y}{y+1}\)
=> x = y
<=> x = \(\sqrt{2012-x}+2012\)
<=> 2012 - x + \(\sqrt{2012-x}\) = 0
<=> \(\sqrt{2012-x}=0\)
<=> x = 2012
Câu a :
Áp dụng BĐT \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\left(a\ne b;a,b>0\right)\) ta có :
\(\dfrac{1}{\sqrt{1.1998}}>\dfrac{2}{1+1998}=\dfrac{2}{1999}\)
\(\dfrac{1}{\sqrt{2.1997}}>\dfrac{2}{2+1997}=\dfrac{2}{19999}\)
.......................................................
\(\dfrac{1}{\sqrt{1998.1}}>\dfrac{2}{1998+1}=\dfrac{2}{1999}\)
Cộng tất cả vế với nhau ta được : \(P>2.\dfrac{1998}{1999}\)
\(\Rightarrowđpcm\)
Câu a, b sao tính chất cái cuối khác những cái còn lại thế. Vậy sao biết tới đâu thì nó dừng.
Bài 1:
a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)
=>2 căn x=6
=>căn x=3
=>x=9
b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)
=>x=1
\(S=\dfrac{1}{\sqrt{1.2012}}+\dfrac{1}{\sqrt{2.2011}}+...+\dfrac{1}{\sqrt{2012.1}}>\dfrac{1}{\dfrac{1+2012}{2}}+\dfrac{1}{\dfrac{2+2011}{2}}+...+\dfrac{1}{\dfrac{2012+1}{2}}=\dfrac{2012}{\dfrac{2013}{2}}=\dfrac{4024}{2013}\)