K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2017

2 = 1.2 => \(\dfrac{1}{2}\) = \(\dfrac{1}{1.2}\) = 1 - \(\dfrac{1}{2}\)

TT \(\dfrac{1}{6}=\dfrac{1}{2}-\dfrac{1}{3}\)

.................

=> VT = 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{\sqrt{2012-x}+2012}{\sqrt{2012-x}+2013}\)

Đặt \(\sqrt{2012-x}+2012=y\)

=> 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{y}{y+1}\)

=> \(\dfrac{x}{x+1}\) = \(\dfrac{y}{y+1}\)

=> x = y

<=> x = \(\sqrt{2012-x}+2012\)

<=> 2012 - x + \(\sqrt{2012-x}\) = 0

<=> \(\sqrt{2012-x}=0\)

<=> x = 2012

NV
26 tháng 11 2021

a.

\(a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2=a^2+\left(a^2+a\right)^2+a^2+2a+1\)

\(=\left(a^2+a\right)^2+2\left(a^2+a\right)+1=\left(a^2+a+1\right)^2\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{y}\right)^2-\dfrac{x}{y}=3\\x+\dfrac{1}{y}+\dfrac{x}{y}=3\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{1}{y}\right)^2+x+\dfrac{1}{y}=6\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{y}=2\Rightarrow\dfrac{x}{y}=1\\x+\dfrac{1}{y}=-3\Rightarrow\dfrac{x}{y}=6\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=2\\\dfrac{x}{y}=1\end{matrix}\right.\) \(\Rightarrow...\)

29 tháng 11 2021

Cho hình bình hành ABCD,cạnh AB=a.AD=b .Tính AC^2+BD^2 theo a và b

giúp em với ạ

 

27 tháng 9 2020

ĐKXĐ : \(\left\{{}\begin{matrix}x\ge2011\\y\ge2012\\z\ge2013\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-2011}\ge0\\b=\sqrt{y-2012}\ge0\\c=\sqrt{z-2013}\ge0\end{matrix}\right.\) ta có :

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}+\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}=0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow a=b=c=2\Leftrightarrow\left\{{}\begin{matrix}x=2015\\y=2016\\z=2017\end{matrix}\right.\)

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

NV
12 tháng 12 2020

Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)

NV
26 tháng 2 2021

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{20a-11}{2012}\\x_1x_2=-1\end{matrix}\right.\)

\(P=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(\dfrac{x_1-x_2}{2}-\dfrac{x_1-x_2}{x_1x_2}\right)^2\)

\(=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(x_1-x_2\right)^2\left(\dfrac{1}{2}-\dfrac{1}{x_1x_2}\right)^2\)

\(=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(x_1-x_2\right)^2\left(\dfrac{1}{2}+1\right)^2\)

\(=6\left(x_1-x_2\right)^2=6\left(x_1+x_2\right)^2-24x_1x_2\)

\(=6\left(\dfrac{20a-11}{2012}\right)^2+24\ge24\)

Dấu "=" xảy ra khi \(a=\dfrac{11}{20}\)