K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

A B C D E F

Gọi AD = ha , BE = hb , CF = hlần lượt là các đường cao của tam giác ABC

Ta có : \(h_b\le1,h_c\le1\)

Không mất tính tổng quát, ta giả sử \(\widehat{C}\le\widehat{B}\le\widehat{A}\). Ta xét hai trường hợp :

  • Với tam giác ABC có ba góc nhọn, khi đó \(\widehat{C}\le60^o,\widehat{A}\ge60^o\)

Ta có : \(S_{\Delta ABC}=\frac{1}{2}c.h_c=\frac{1}{2}.\frac{h_b.h_c}{sinA}\le\frac{1}{2sin60^o}=\frac{\sqrt{3}}{3}\)

  • Với tam giác ABC không phải là tam giác có ba góc nhọn , khi đó \(\widehat{A}\ge90^o\)

 ta có : \(S_{\Delta ABC}\le\frac{1}{2}h_c.c=\frac{h_bh_c}{2sinA}\le\frac{1}{2sin90^o}=\frac{1}{2}< \frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

18 tháng 1 2021

Hình như câu b chưa rõ lắm, tam giác ABC cân tại đâu?

18 tháng 1 2021

đề chỉ ghi tam giác cân thôi bạn

7 tháng 2 2021

Ta có : \(\dfrac{1}{2}\sqrt{\overrightarrow{AB}^2\overrightarrow{AC}^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)

\(=\dfrac{1}{2}.\sqrt{AB^2AC^2-\left(AB.AC.CosBAC\right)^2}\)

\(=\dfrac{1}{2}.\sqrt{AB^2AC^2-AB^2.AC^2.Cos^2BAC}\)

\(=\dfrac{1}{2}\sqrt{AB^2AC^2\left(1-Cos^2BAC\right)}\)

Thấy : \(Sin^2a+Cos^2a=1\)

\(\Rightarrow Sin^2a=1-Cos^2a\)

\(\Rightarrow\dfrac{1}{2}\sqrt{AB^2AC^2Sin^2BAC}=\dfrac{1}{2}\left|AB.AC.SinBAC\right|=\dfrac{1}{2}AB.AC.SinBAC=S\)

=> ĐPCM

 

7 tháng 2 2021

Sao đề là lạ đoạn kia là \(\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2\)à