Cho hai điểm A,B nằm trong một nửa mặt phẳng bờ là đường thẳng d. Tìm M thuộc d sao cho MA+MB ngắn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẽ AH vuông góc d và A'H đối xứng với AH
R là giao điểm A'B và d.
Vì AH=A'H (cách dựng) và HP vuông góc với AA' nên dễ dàng suy ra tam giác APA' cân => AP=A'P
Áp dụng t/chất đường gấp khúc ta có:
AP+PB=A'P+PB>=A'B
Dấu ''='' xảy ra khi 3 điểm A',P,B thẳng hàng hay P trùng R
Vẽ điểm C đối xứng với B qua đường thẳng d, giả sử tìm được điểm M trên d thì MB = MC ( 1 ).
Do A, B, d cố định nên C cũng cố định suy ra độ dài đoạn AC không đổi.
Áp dụng bất đẳng thức tam giác ta có vào Δ AMC ta được: MA + MC ≥ AC ( 2 )
Dấu bằng xảy ra khi M nằm giữa A và C hay M là giao điểm của AC và đường thẳng d
Từ ( 1 ) và ( 2 ) suy ra MA + MB nhỏ nhất bằng AC khi M là giao điểm của AC và đường thẳng d
Vẽ điểm C đối xứng với B qua đường thẳng d, giả sử tìm được điểm M trên d thì MB = MC ( 1 ).
Do A, B, d cố định nên C cũng cố định suy ra độ dài đoạn AC không đổi.
Áp dụng bất đẳng thức tam giác ta có vào Δ AMC ta được: MA + MC ≥ AC ( 2 )
Dấu bằng xảy ra khi M nằm giữa A và C hay M là giao điểm của AC và đường thẳng d
Từ ( 1 ) và ( 2 ) suy ra MA + MB nhỏ nhất bằng AC khi M là giao điểm của AC và đường thẳng d
qua d lấy B' đối xứng với B ta có d là trung trực của BB' mà M∈d => MB=MB'
=> AM+MB = AM+ MB' ≥ AB' (bđt tam giác trong tam giác AB'M)( dấu = khi A M B' thẳng hàng)