Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ điểm C đối xứng với B qua đường thẳng d, giả sử tìm được điểm M trên d thì MB = MC ( 1 ).
Do A, B, d cố định nên C cũng cố định suy ra độ dài đoạn AC không đổi.
Áp dụng bất đẳng thức tam giác ta có vào Δ AMC ta được: MA + MC ≥ AC ( 2 )
Dấu bằng xảy ra khi M nằm giữa A và C hay M là giao điểm của AC và đường thẳng d
Từ ( 1 ) và ( 2 ) suy ra MA + MB nhỏ nhất bằng AC khi M là giao điểm của AC và đường thẳng d
Gọi D là điểm đối xứng A qua d \(\Rightarrow\) d là trung trực AD \(\Rightarrow CA=CD\)
Nối BD cắt d tại M
Do BD là đường thẳng và BCD là đường gấp khúc nên ta luôn có:
\(BC+CD\ge BM+MD\)
\(\Leftrightarrow CB+CA\ge BD\)
Dấu "=" xảy ra khi và chỉ khi C trùng M
\(\Rightarrow\) Độ dài CA+CB ngắn nhất khi C là giao điểm của BD và d, trong đó D là điểm đối xứng với A qua d
Từ A kẽ AH vuông góc d và A'H đối xứng với AH
R là giao điểm A'B và d.
Vì AH=A'H (cách dựng) và HP vuông góc với AA' nên dễ dàng suy ra tam giác APA' cân => AP=A'P
Áp dụng t/chất đường gấp khúc ta có:
AP+PB=A'P+PB>=A'B
Dấu ''='' xảy ra khi 3 điểm A',P,B thẳng hàng hay P trùng R
EM MỚI HỌC LỚP 6 , EM CHƯA BÍT BÀI NÀY THÔNG CẢM NHA !!!
Vẽ điểm C đối xứng với B qua đường thẳng d, giả sử tìm được điểm M trên d thì MB = MC ( 1 ).
Do A, B, d cố định nên C cũng cố định suy ra độ dài đoạn AC không đổi.
Áp dụng bất đẳng thức tam giác ta có vào Δ AMC ta được: MA + MC ≥ AC ( 2 )
Dấu bằng xảy ra khi M nằm giữa A và C hay M là giao điểm của AC và đường thẳng d
Từ ( 1 ) và ( 2 ) suy ra MA + MB nhỏ nhất bằng AC khi M là giao điểm của AC và đường thẳng d