K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(K=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{a-1}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\dfrac{a-1}{\sqrt{a}+1}=\dfrac{a-1}{\sqrt{a}}\)

b: Thay \(a=3+2\sqrt{2}\) vào K, ta được:

\(K=\dfrac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{2\sqrt{2}+2}{\sqrt{2}+1}=2\)

c: Để K<0 thì a-1<0

hay 0<a<1

5 tháng 7 2021

undefined

a.

\(A=\left(1-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+1}\right)\)

\(=\left(\dfrac{1-\sqrt{a}}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\dfrac{1-\sqrt{a}}{\sqrt{a}}.\dfrac{2\sqrt{a}}{a-1}=\dfrac{2\left(1-\sqrt{a}\right)}{a-1}=\dfrac{-2\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{-2}{\sqrt{a}+1}\)

b.

\(a-2\sqrt{2}\rightarrow\sqrt{a}=\sqrt{2}-1\)

\(=2-2\sqrt{2}+1\)

=\(\left(\sqrt{2}-1\right)^2\)

\(\rightarrow A=\dfrac{-2}{\sqrt{2}-1+1}=\dfrac{-1}{\sqrt{2}}=\sqrt{2}\)

 

7 tháng 7 2021

=>\(A=\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right).\left(\dfrac{\sqrt{a}+1+\sqrt{a}-1}{a-1}\right)\left(a>0,a\ne1\right)\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}.\dfrac{2\sqrt{a}}{a-1}=\dfrac{2}{\sqrt{a}+1}\)

b, \(a=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\) thế vào A

\(=>A=\dfrac{2}{\sqrt{\left(\sqrt{2}-1\right) ^2}+1}=\dfrac{2}{\sqrt{2}}\)

26 tháng 12 2021

a: \(A=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

27 tháng 12 2021

\(ĐK:a>0;a\ne1;a\ne4\\ a,A=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,A>0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow a>4\)

13 tháng 8 2021

a,\(ĐK:x>0,x\ne1,x\ne4\)

\(A=\left[\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b,\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)

\(=>A=\dfrac{\sqrt{2}-3}{3\sqrt{2}-3}\)

13 tháng 8 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-1>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>1\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\) 

\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b) Ta có \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(2-1\right)^2=1\)

Thay \(x=1\) vào \(A\), ta được:

\(A=\dfrac{\sqrt{1}-2}{3\sqrt{1}}=\dfrac{1-2}{3}=-\dfrac{1}{3}\)

17 tháng 8 2021

1, A=\(\left(1-\dfrac{2\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}+a+1}\right)\)

ĐKXĐ: a≥0

A=\(\left(1-\dfrac{2\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{\sqrt{a}\left(a+1\right)+1\left(a+1\right)}\right)\)

A=\(\left(\dfrac{a+1}{a+1}-\dfrac{2\sqrt{a}}{a+1}\right):\left(\dfrac{a+1}{\left(\sqrt{a}+1\right)\left(a+1\right)}-\dfrac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a+1\right)}\right)\)

A=\(\left(\dfrac{a+1-2\sqrt{a}}{a+1}\right):\left(\dfrac{a+1-2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a+1\right)}\right)\)

A=\(\left(\dfrac{a+1-2\sqrt{a}}{a+1}\right).\left(\dfrac{\left(a+1\right)\left(\sqrt{a}+1\right)}{a+1-2\sqrt{a}}\right)\)

A=\(\sqrt{a}+1\)

Vậy A=\(\sqrt{a}+1\)

2, a=1996-2\(\sqrt{1995}\)

a=\(1995-2\sqrt{1995}+1\)

a=\(\left(\sqrt{1995}-1\right)^2\) (TMĐKXĐ)

thay a=\(\left(\sqrt{1995}-1\right)^2\) vào A ta có:

A=\(\sqrt{\left(\sqrt{1995}-1\right)^2}+1\)

A=\(\sqrt{1995}\)

Vậy a=1996-2\(\sqrt{1995}\) thì A=\(\sqrt{1995}\)

 

 

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:

a) ĐK: \(a>0; a\neq 1\)

\(K=\left(\frac{a}{\sqrt{a}(\sqrt{a}-1)}-\frac{1}{\sqrt{a}(\sqrt{a}-1)}\right): \left(\frac{\sqrt{a}+1}{(\sqrt{a}-1)(\sqrt{a}+1)}+\frac{2}{(\sqrt{a}-1)(\sqrt{a}+1)}\right)\)

\(=\frac{a-1}{\sqrt{a}(\sqrt{a}-1)}: \frac{\sqrt{a}+1+2}{(\sqrt{a}-1)(\sqrt{a}+1)}\)

\(=\frac{(\sqrt{a}-1)(\sqrt{a}+1)}{\sqrt{a}(\sqrt{a}-1)}. \frac{(\sqrt{a}-1)(\sqrt{a}+1)}{\sqrt{a}+3}\)

\(=\frac{(\sqrt{a}+1)^2(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}+3)}\)

b) \(a=3+2\sqrt{a}\Leftrightarrow a-2\sqrt{a}-3=0\)

\(\Leftrightarrow (\sqrt{a}-3)(\sqrt{a}+1)=0\)

\(\Rightarrow \sqrt{a}=3\)

Khi đó: \(K=\frac{(3+1)^2(3-1)}{3.(3+3)}=\frac{16}{9}\)

c) Để \(K< 0\Leftrightarrow \frac{(\sqrt{a}+1)^2(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}+3)}< 0\)

\(\frac{(\sqrt{a}+1)^2}{\sqrt{a}(\sqrt{a}+3)}>0, \forall a> 0; a\neq 1\), do đó \(\sqrt{a}-1< 0\Leftrightarrow 0< a< 1\)

Vậy .........

26 tháng 7 2021

A=\(\left[\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(a-1\right)\left(\sqrt{a}+2\right)}-\dfrac{\left(a+\sqrt{a}\right)}{\left(a-1\right)}\right]\)::::::::\(\left(\dfrac{\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)

=\(\left[\dfrac{1}{\sqrt{a}-1}\right]:\left(\dfrac{2\sqrt{a}}{a-1}\right)\)=\(\dfrac{\sqrt{a}-1}{2\sqrt{a}}\)

=\(\dfrac{a^2+a\sqrt{a}+11a+6}{2\sqrt{a}\left(\sqrt{a}+2\right)}\)

Ta có: \(A=\left(\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}+1-\sqrt{a}}{\sqrt{a}-1}:\dfrac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{1}{\sqrt{a}-1}\cdot\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}\)

\(=\dfrac{\sqrt{a}+1}{2\sqrt{a}}\)

3 tháng 7 2023

a

ĐK: \(1< x\ne10\)

Đặt \(t=\sqrt{x-1}\Rightarrow x=t^2+1;0< t\ne3\)

Khi đó:

\(P=\left(\dfrac{t}{3+t}+\dfrac{t^2+9}{\left(3-t\right)\left(3+t\right)}\right):\left(\dfrac{3t+1}{t^2-3t}-\dfrac{1}{t}\right)\\ =\left(\dfrac{t\left(3-t\right)+t^2+9}{\left(3-t\right)\left(3+t\right)}\right):\left(\dfrac{3t+1}{t\left(t-3\right)}-\dfrac{1}{t}\right)\\ =\dfrac{3t+9}{\left(3-t\right)\left(3+t\right)}:\dfrac{3t+1-t+3}{t\left(t-3\right)}=\dfrac{3\left(t+3\right)}{\left(3-t\right)\left(3+t\right)}:\dfrac{2t+4}{t\left(t-3\right)}\\ =\dfrac{3\left(t+3\right)}{\left(3-t\right)\left(3+t\right)}.\dfrac{t\left(t-3\right)}{2t+4}=\dfrac{-3t}{2t+4}=\dfrac{-3\sqrt{x-1}}{2\sqrt{x-1}+4}\)

b

Ta có:

\(x=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{5}+1\right)\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{5}\left|1-\sqrt{2}\right|\)

\(=\sqrt{2}+1-\left(\sqrt{5}+1\right)\left|1-\sqrt{2}\right|+\sqrt{5}\left|1-\sqrt{2}\right|\)

\(=\sqrt{2}+1-\sqrt{5}\left|1-\sqrt{2}\right|-\left|1-\sqrt{2}\right|+\sqrt{5}\left|1-\sqrt{2}\right|\\ =\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)

Vậy \(P=\dfrac{-3\sqrt{2-1}}{2\sqrt{2-1}+4}=-\dfrac{1}{2}\)