K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2023

a

ĐK: \(1< x\ne10\)

Đặt \(t=\sqrt{x-1}\Rightarrow x=t^2+1;0< t\ne3\)

Khi đó:

\(P=\left(\dfrac{t}{3+t}+\dfrac{t^2+9}{\left(3-t\right)\left(3+t\right)}\right):\left(\dfrac{3t+1}{t^2-3t}-\dfrac{1}{t}\right)\\ =\left(\dfrac{t\left(3-t\right)+t^2+9}{\left(3-t\right)\left(3+t\right)}\right):\left(\dfrac{3t+1}{t\left(t-3\right)}-\dfrac{1}{t}\right)\\ =\dfrac{3t+9}{\left(3-t\right)\left(3+t\right)}:\dfrac{3t+1-t+3}{t\left(t-3\right)}=\dfrac{3\left(t+3\right)}{\left(3-t\right)\left(3+t\right)}:\dfrac{2t+4}{t\left(t-3\right)}\\ =\dfrac{3\left(t+3\right)}{\left(3-t\right)\left(3+t\right)}.\dfrac{t\left(t-3\right)}{2t+4}=\dfrac{-3t}{2t+4}=\dfrac{-3\sqrt{x-1}}{2\sqrt{x-1}+4}\)

b

Ta có:

\(x=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{5}+1\right)\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{5}\left|1-\sqrt{2}\right|\)

\(=\sqrt{2}+1-\left(\sqrt{5}+1\right)\left|1-\sqrt{2}\right|+\sqrt{5}\left|1-\sqrt{2}\right|\)

\(=\sqrt{2}+1-\sqrt{5}\left|1-\sqrt{2}\right|-\left|1-\sqrt{2}\right|+\sqrt{5}\left|1-\sqrt{2}\right|\\ =\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)

Vậy \(P=\dfrac{-3\sqrt{2-1}}{2\sqrt{2-1}+4}=-\dfrac{1}{2}\)

26 tháng 8 2021

đk : \(x\ge0,x\ne1\)

\(=>P=\left[\dfrac{2\left(\sqrt{x}+2\right)-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]:\left[\dfrac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]\)

\(P=\left[\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right].\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\right]\)

\(P=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b,\(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\) thay vào P

\(=>P=\dfrac{2\sqrt{\left(\sqrt{5}-1\right)^2}-1}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}=\dfrac{2\sqrt{5}-3}{\sqrt{5}}\)

c,\(=>\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}=>2x-\sqrt{x}=\sqrt{x}+1\)

\(=>2x-2\sqrt{x}-1=0< =>2\left(x-\sqrt{x}-\dfrac{1}{2}\right)=0\)

\(=>x-\sqrt{x}-\dfrac{1}{2}=>\Delta=1-4\left(-\dfrac{1}{2}\right)=3>0=>\left[{}\begin{matrix}x1=\dfrac{1+\sqrt{3}}{2}\\x2=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)

đối chiếu đk loại x2 còn x1 thỏa

 

 

29 tháng 1 2021

a) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow B=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(\Leftrightarrow B=\dfrac{2-\sqrt{x}}{3\sqrt{x}}\)

b) \(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)  (*)

Thay (*) vào B , ta được : \(B=\dfrac{2-\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+3}\)

 

29 tháng 1 2021

Chép sai đề r bạn ơi!

23 tháng 12 2020

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)

\(=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)

b) Ta có: \(x=3-2\sqrt{2}\)

\(=2-2\cdot\sqrt{2}\cdot1+1\)

\(=\left(\sqrt{2}-1\right)^2\)

Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(P=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\), ta được: 

\(P=\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{2}-\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\dfrac{1}{\sqrt{2}-1}\)

\(=\sqrt{2}+1\)

Vậy: Khi \(x=3-2\sqrt{2}\) thì \(P=\sqrt{2}+1\)

23 tháng 12 2020

cái x-3 ở tử phân tích kiểu j ra đc cái kia v bạn

 

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
ĐKXĐ: $x>0$

a. \(P=\frac{x-1}{\sqrt{x}}:\left[\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}+\frac{1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}\right]\)

\(=\frac{x-1}{\sqrt{x}}:\frac{x-1+1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}=\frac{x-1}{\sqrt{x}}:\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}+1)}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{(\sqrt{x}+1)^2}{\sqrt{x}}\)

b.

\(x=\frac{4}{4+2\sqrt{3}}=(\frac{2}{\sqrt{3}+1})^2\Rightarrow \sqrt{x}=\frac{2}{\sqrt{3}+1}\)

\(P=\frac{(\frac{2}{\sqrt{3}+1}+1)^2}{\frac{2}{\sqrt{3}+1}}=\frac{3+3\sqrt{3}}{2}\)

 

a: Ta có: \(P=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}\)

Ta có: \(P=\left(\dfrac{3x-6\sqrt{x}}{x\sqrt{x}-2x}-\dfrac{1}{2-\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\cdot\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{x\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\cdot\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\)\(=\dfrac{3\sqrt{x}-6+\sqrt{x}+x-5\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)^2}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

Sửa đề: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{9}{4}\end{matrix}\right.\)

a) Ta có: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\dfrac{2\cdot\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)

\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{2x+2\sqrt{x}+\sqrt{x}+1}\)

\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

b) Ta có: \(x=\dfrac{3-2\sqrt{2}}{4}\)

\(\Leftrightarrow x=\dfrac{2-2\cdot\sqrt{2}\cdot1+1}{4}\)

\(\Leftrightarrow x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\)(thỏa ĐK)

Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào biểu thức \(P=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\), ta được:

\(P=\left(3\cdot\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{4}}-5\right):\left(2\cdot\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{4}}+1\right)\)

\(\Leftrightarrow P=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)

\(\Leftrightarrow P=\left(\dfrac{3\cdot\left(\sqrt{2}-1\right)}{2}-\dfrac{10}{2}\right):\left(\sqrt{2}-1+1\right)\)

\(\Leftrightarrow P=\dfrac{3\sqrt{2}-3-10}{2}:\sqrt{2}\)

\(\Leftrightarrow P=\dfrac{3\sqrt{2}-13}{2}\cdot\sqrt{2}\)

\(\Leftrightarrow P=\dfrac{6-13\sqrt{2}}{2}\)

Vậy: Khi \(x=\dfrac{3-2\sqrt{2}}{4}\) thì \(P=\dfrac{6-13\sqrt{2}}{2}\)

13 tháng 8 2021

a,\(ĐK:x>0,x\ne1,x\ne4\)

\(A=\left[\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b,\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)

\(=>A=\dfrac{\sqrt{2}-3}{3\sqrt{2}-3}\)

13 tháng 8 2021

a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-1>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>1\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\) 

\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b) Ta có \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(2-1\right)^2=1\)

Thay \(x=1\) vào \(A\), ta được:

\(A=\dfrac{\sqrt{1}-2}{3\sqrt{1}}=\dfrac{1-2}{3}=-\dfrac{1}{3}\)