Cho hình vuông ABCD. Trên cạnh AB lấy điểm E sao cho BE = 1/3 AB. Đường thẳng DE cắt CB kéo dài tại K
a)Chứng minh ∆ ADE đồng dạng với ∆ BKE
b) Gọi H là hình chiếu của C trên DE. Chứng minh: AD.HD = HC.AE
c) Tính diện tích tam giác CDK khi độ dài AB = 6cm
d) Chứng minh: CH. KD = CD2 + CB.KB
a) Xét hai tam giác vuông ADE và BKE có:
\(\widehat{E_1}=\widehat{E_2}\) (đđ)
Do đó: \(\Delta ADE\sim\Delta BKE\) (g.g)
b) Xét hai tam giác vuông ADE và HCD có:
\(\widehat{HDC}=\widehat{E_1}\) (Cùng phụ với \(\widehat{ADE}\) )
Do đó: \(\Delta ADE\sim\Delta HCD\) (g.g)
\(\Rightarrow\dfrac{AD}{HC}=\dfrac{AE}{HD}\Leftrightarrow AD.HD=HC.AE\)
c) Do ABCD là hình vuông nên AB=AD=BC=CD=6 (cm)
Vì \(\Delta ADE\sim\Delta BKE\) nên \(\dfrac{AE}{BE}=\dfrac{AD}{BK}=2\) (Vì \(BE=\dfrac{1}{3}AB\))
\(\Rightarrow BK=\dfrac{AD}{2}=\dfrac{6}{2}=3\) (cm)
\(\Rightarrow CK=BC+BK=6+3=9\) (cm)
Do đó: \(S_{CDK}=\dfrac{CD.CK}{2}=\dfrac{6.9}{2}=27\) (cm2).
d) Ta có: \(\dfrac{CH.KD}{2}=\dfrac{CD.CK}{2}\left(=S_{CDK}\right)\)
\(\Leftrightarrow CH.KD=CD.CK=CD\left(CB+KB\right)=CD.CB+CD.KB=CD.CD+CB.KB=CD^2+CB.KB\) (Vì CD = CB)