K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 5 2018

Lời giải :

Ta thấy:

\(\left\{\begin{matrix} m^2+2\vdots n\\ n^2+2\vdots m\end{matrix}\right.\) \(\Rightarrow (m^2+2)(n^2+2)\vdots mn\)

\(\Leftrightarrow m^2n^2+2m^2+2n^2+4\vdots mn\)

\(\Rightarrow 2m^2+2n^2+4\vdots mn\)

\(\Leftrightarrow 2(m^2+n^2+2)\vdots mn\)

Vì $m,n$ đều lẻ nên \((2,mn)=1\Rightarrow m^2+n^2+2\vdots mn(*)\)

Mặt khác:

Một số chính phương thì chia $4$ dư $0,1$. Vì $m,n$ lẻ nên \(m^2\equiv n^2\equiv 1\pmod 4\)

\(\Rightarrow m^2+n^2+2\equiv 4\equiv 0\pmod 4\) hay \(m^2+n^2+2\vdots 4(**)\)

Từ \((*);(**)\)\((4,mn)=1\) nên \(m^2+n^2+2\vdots 4mn\)

Ta có đpcm.

15 tháng 5 2018

Ta thấy:

⎧⎩⎨m2+2⋮nn2+2⋮m{m2+2⋮nn2+2⋮m ⇒(m2+2)(n2+2)⋮mn⇒(m2+2)(n2+2)⋮mn

⇔m2n2+2m2+2n2+4⋮mn⇔m2n2+2m2+2n2+4⋮mn

⇒2m2+2n2+4⋮mn⇒2m2+2n2+4⋮mn

⇔2(m2+n2+2)⋮mn⇔2(m2+n2+2)⋮mn

m,nm,n đều lẻ nên (2,mn)=1⇒m2+n2+2⋮mn(∗)(2,mn)=1⇒m2+n2+2⋮mn(∗)

Mặt khác:

Một số chính phương thì chia 440,10,1. Vì m,nm,n lẻ nên m2≡n2≡1(mod4)m2≡n2≡1(mod4)

⇒m2+n2+2≡4≡0(mod4)⇒m2+n2+2≡4≡0(mod4) hay m2+n2+2⋮4(∗∗)m2+n2+2⋮4(∗∗)

Từ (∗);(∗∗)(∗);(∗∗)(4,mn)=1(4,mn)=1 nên m2+n2+2⋮4mnm2+n2+2⋮4mn

đúng thì tick nhé

30 tháng 5 2018

Ta có : \(m;n\)là hai số nguyên tố cùng nhau.

\(\RightarrowƯCLN(m;n)=1\)

Mà \(m^2⋮n\)

      \(n^2⋮m\)

Và có : \(m;n\)là hai số lẻ nguyên dương

\(\Rightarrow m=m=1\)

\(\Rightarrow m^2+n^2+2=4\)

\(\Rightarrow4m.n=4\)

\(\Rightarrow m^2+n^2+2⋮4mn\left(đpcm\right)\)

30 tháng 5 2018

Ta có:

\(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\)

\(\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\)

\(\Rightarrow m^2n^2+2m^2+2n^2+4⋮mn\)

\(\Rightarrow2m^2+2n^2+4⋮mn\)

\(\Rightarrow m^2+n^2+2⋮mn\left(1\right)\)

Vì m, n lẻ 

\(\Rightarrow\hept{\begin{cases}m^2\equiv1\left(mod4\right)\\n^2\equiv1\left(mod4\right)\end{cases}}\)

\(\Rightarrow m^2+n^2+2⋮4\left(2\right)\)

Từ (1) và (2) \(\Rightarrow m^2+n^2+2⋮4mn\)

a, x2+5y2+2y-4xy-3=0

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)

\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)

lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)

Vậy.................

5 tháng 3 2020

a) \(x^2+5y^2+2y-4xy-3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta thấy : \(4=0+4\) là tổng hai số chính phương

Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)

Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.

Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)

\(\Leftrightarrow x=-6\)

Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.

P/s : Không chắc lắm ....

27 tháng 1 2021

\(f\left(20\right)=f\left(1\right)+f\left(19\right)+3\left(4.1.19-1\right)=f\left(19\right)+12.19-3\)

\(f\left(19\right)=f\left(18\right)+12.18-3\)

\(f\left(18\right)=f\left(17\right)+12.17-3\)

.....

\(f\left(3\right)=f\left(2\right)+12.2-3\)

\(f\left(2\right)=f\left(1\right)+12-3\)

Cộng vế theo vế các đẳng thức trên:

\(f\left(2\right)+f\left(3\right)+...+f\left(20\right)=f\left(1\right)+f\left(2\right)+...+f\left(19\right)+12\left(1+2+...+19\right)-3.20\)

\(\Leftrightarrow f\left(20\right)=2220\)

Đoạn này bạn tính kĩ một chút nha, mình tính không biết có sai không.

7 tháng 10 2017

???????????????????

23 tháng 10 2017

??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

10 tháng 8 2017

giả thiết m và n nguyên tố cùng nhau

nên ƯCLN(m;n)=1

Mà m^2chia hết cho n

Và n^2 chia hết cho m 

m,n nguyên dương lẻ

nên m=n=1

Do đó m^2+n^2+2=4

4.m.n=4

Vậy ta được đpcm

7 tháng 10 2017

má mới học lớp 4 sao má bít được

8 tháng 7 2019

Nguyen p nguyên tố=>p2>p<=>p2-1>p-1

=>2y(y+1)>2x(x+1) mà: x,y nguyên dưong=>y>x

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

Lời giải:

Lấy PT dưới trừ PT trên thu được:

\(2y(y+2)-2x(x+2)=p^2-p\)

\(\Leftrightarrow 2(y-x)(y+x+2)=p(p-1)\)

\(\Rightarrow 2(y-x)(y+x+2)\vdots p(1)\)

Vì $p=2x(x+2)+1\geq 7$ với mọi $x$ nguyên dương nên $p$ là số nguyên tố lẻ. $\Rightarrow (2,p)=1(2)$

Lại có:

Hiển nhiên $y>x$ nên $y-x$ dương.

\((y-x)^2< 2(y-x)(y+x+2)=p(p-1)< p^2\)

\(\Rightarrow y-x< p(3)\)

Từ \((1);(2);(3)\Rightarrow y+x+2\vdots p\)

Mà:

\(p=2x(x+2)+1>2x^2\geq 2x\Rightarrow x< \frac{p}{2}\)

\(p^2=2y(y+2)+1>y^2\Rightarrow y< p\)

\(\Rightarrow x+y+2< \frac{p}{2}+p+2< 2p\) với $p\geq 7$

Do đó để $x+y+2\vdots p$ thì $x+y+2=p$

\(\Rightarrow y-x=\frac{p-1}{2}\)

\(\Rightarrow x=\frac{p-3}{4}\)

Thay vào PT đầu tiên:

\(p-1=\frac{p-3}{2}.\frac{p+5}{4}\)

\(\Leftrightarrow 8(p-1)=p^2+2p-15\Leftrightarrow (p+1)(p-7)=0\Rightarrow p=7\)

10 tháng 12 2015

Câu hỏi tương tự