Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(y+1\right)=8\\ \Rightarrow xy+x+y+1=8\\ \Rightarrow xy+x+y=7\)
\(x\left(x+1\right)+y\left(y+1\right)+xy=17\\ \Rightarrow x^2+y^2+x+y+xy=17\\ \Rightarrow x^2+y^2=10\)
`{((a-1)x+y=a),(x+(a-1)y=2):}`
`<=>{(ax-x+y=a),(x+ay-y=2):}`
`<=>{(a(x-1)=x-y<=>a=[x-y]/[x-1]),(x+[x-y]/[x-1]-y=2):}`
`<=>x(x-1)+x-y-y(x-1)=2(x-1)`
`<=>x^2-x+x-y-xy+y=2x-2`
`<=>x^2-xy-2x+2=0`
_________________________________________
`b)x^2-xy-2x+2=0`
`<=>xy=x^2-2x+2`
`<=>y=x-2+2/x`
Thay `y=x-2+2/x` vào `6x^2-17y=7` có:
`6x^2-17(x-2+2/x)=7`
`<=>6x^3-17x^2+34x-34-7x=0`
`<=>6x^3-12x^2-5x^2+10x+17x-34=0`
`<=>(x-2)(6x^2-5x+17)=0`
Mà `6x^2-5x+17 > 0`
`=>x-2=0<=>x=2`
`=>y=2-2+2/2=1`
Thay `x=2;y=1` vào `(a-1)x+y=a` có: `(a-1).2+1=a<=>a=1`
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Nếu x,y nguyên dương thì 3x,3y nguyên dương
=> 3x-1 , 3y-1 nguyên âm mà 2y,2x nguyên dương
=> không có số nguyên dương x, y nào thỏa mản đk
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.
Nguyen p nguyên tố=>p2>p<=>p2-1>p-1
=>2y(y+1)>2x(x+1) mà: x,y nguyên dưong=>y>x
Lời giải:
Lấy PT dưới trừ PT trên thu được:
\(2y(y+2)-2x(x+2)=p^2-p\)
\(\Leftrightarrow 2(y-x)(y+x+2)=p(p-1)\)
\(\Rightarrow 2(y-x)(y+x+2)\vdots p(1)\)
Vì $p=2x(x+2)+1\geq 7$ với mọi $x$ nguyên dương nên $p$ là số nguyên tố lẻ. $\Rightarrow (2,p)=1(2)$
Lại có:
Hiển nhiên $y>x$ nên $y-x$ dương.
\((y-x)^2< 2(y-x)(y+x+2)=p(p-1)< p^2\)
\(\Rightarrow y-x< p(3)\)
Từ \((1);(2);(3)\Rightarrow y+x+2\vdots p\)
Mà:
\(p=2x(x+2)+1>2x^2\geq 2x\Rightarrow x< \frac{p}{2}\)
\(p^2=2y(y+2)+1>y^2\Rightarrow y< p\)
\(\Rightarrow x+y+2< \frac{p}{2}+p+2< 2p\) với $p\geq 7$
Do đó để $x+y+2\vdots p$ thì $x+y+2=p$
\(\Rightarrow y-x=\frac{p-1}{2}\)
\(\Rightarrow x=\frac{p-3}{4}\)
Thay vào PT đầu tiên:
\(p-1=\frac{p-3}{2}.\frac{p+5}{4}\)
\(\Leftrightarrow 8(p-1)=p^2+2p-15\Leftrightarrow (p+1)(p-7)=0\Rightarrow p=7\)