K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Sử dụng phương pháp phản chứng 
Giả sử n chia hết cho 5 
=>n có dạng 5k 
=>\(\text{n}^2+\text{n}+1=25k^2+5k+1=5k\left(5k+1\right)+1\)
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5 
=>25k^2+5k+1 ko chia hết cho 5

(đpcm)

8 tháng 8 2017

 \(\text{n^2+n+1 = n(n+1) +1 }\)
vì n(n+1) luôn là số chẵn suy ra n(n+1)+1 luôn lẻ --> ko chia hết cho 4

24 tháng 11 2015

n 2+n+1 = n﴾n + 1﴿ +1

. Vì n﴾n+1﴿ là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6

Do đó n﴾n+1﴿ + 1 có chữ số tận cùng là 1, 3, 7.

Vì 1, 3, 7 không chia hết cho 2 và 5 nên n﴾n+1﴿ + 1 không chia hết cho 4 và 5

Vậy n 2+n+1 không chia hết cho 4 và 5.

bạn bấm vào dòng chữ xanh này nhé

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

11 tháng 8 2018

n2+n+1 = n(n+1) + 1

vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) + 1 là số lẻ 

n(n+1) + 1 ko chia hết cho 4 (ĐPCM)

vì tích hai số liên tiếp có tận cùng là 0;2;6

=> n(n+1) có tận cùng 1 trong số 0;2;6 => n(n+1) +1 có tận cùng 1 trong số 1;3;7 ko chia hết cho 5(đpcm)

31 tháng 12 2018

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4