K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

Áp dụng BĐT : \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2 ( a > 0 ; b > 0)

Ta có : \(\dfrac{xy}{z}+\dfrac{xz}{y}\) = \(x\left(\dfrac{y}{z}+\dfrac{z}{y}\right)\) ≥ 2x ( x > 0 ; y > 0 ; z > 0) (1)

\(\dfrac{xz}{y}+\dfrac{zy}{x}=z\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\) ≥ 2z ( x > 0 ; y > 0 ; z > 0) ( 2)

\(\dfrac{xy}{z}+\dfrac{zy}{x}=y\left(\dfrac{x}{z}+\dfrac{z}{x}\right)\) ≥ 2y ( x > 0 ; y > 0 ; z > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3)

\(\dfrac{xy}{z}+\dfrac{xz}{y}\) + \(\dfrac{xz}{y}+\dfrac{zy}{x}\) + \(\dfrac{xy}{z}+\dfrac{zy}{x}\) ≥ 2x + 2y + 2z
\(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{zy}{x}\) ≥ x + y + z

30 tháng 4 2018

Dễ thôi

\(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\ge x+y+z\)

\(xyz(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y})\ge xyz(x+y+z)\)

\(x^2y^2+x^2z^2+y^2z^2\ge x^2yz+xz^2y+y^2zx\)\(2x^2y^2+2x^2z^2+2y^2z^2\ge2x^2yz+2xz^2y+2y^2zx\)

\((x^2y^2-2x^2yz+x^2z^2)+(y^2z^2-2y^2zx+x^2y^2)+(x^2z^2-2yz^2x+y^2z^2)\ge0\)

\(\left(xy-xz\right)^2+\left(xz-yz\right)^2+\left(yz-xy\right)^2\ge0\left(lđ\right)\)

30 tháng 4 2018

Bất đẳng thức Cauchy-Schwarz

\(\frac{xy}{z}+\frac{yz}{x}\ge2y\left(1\right)\)

\(\frac{yz}{x}+\frac{zx}{y}\ge2x\left(2\right)\)

\(\frac{yz}{x}+\frac{zx}{y}\ge2z\left(3\right)\)

Cộng vế (1) ; (2) và (3) và chia mỗi vế cho 2 

\(\Rightarrow\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge x+y+z\left(đpcm\right)\)

17 tháng 4 2016

Vì 0xy+yz+xz=0.Nên:X,y,z đều bằng 0 và bằng nhau.

11 tháng 8 2017

Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\forall x\in R\)

Tương tự: \(y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\in R\)

Cộng theo vế 2 BĐT (1);(2) ta có:

\(2\left(x^2+y^2+z^2\right)+3\ge45\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge42\Rightarrow x^2+y^2+z^2\ge21\)

Khi x=y=z=1

11 tháng 8 2017

Sửa đề : cho \(CM:x^2+y^2+z^2\ge21\)

Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xy-2xz\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)(1)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z+3\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge2x+2y+2z-3\)(2)

Cộng vế với vế của (1); (2) lại ta được :

\(2\left(x^2+y^2+z^2\right)\ge xy+yz+xy+2x+2y+2z-3\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge45-3=42\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{42}{2}=21\)(đpcm)

NV
21 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=4\\zx+z+x+1=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(z+1\right)\left(x+1\right)=8\end{matrix}\right.\) (1)

Nhân vế với vế

\(\Rightarrow\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\pm8\)

- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\) (2) chia vế cho vế của 2 với từng pt của (1) ta được:

\(\left\{{}\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\\z=3\end{matrix}\right.\)

- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\) (2) chia vế cho vế của (2) cho từng pt của (1)

\(\Rightarrow\left\{{}\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-2\\z=-5\end{matrix}\right.\)

21 tháng 8 2021

ai giúp mk với

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

4 tháng 7 2016

\(x;y;z\ne0\). Giả thiết của đề bài:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)

=> x = y = z

Do đó, M = 1.