K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Bài 8:

Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.

Tìm GTNN của F=a2+b2+x2+y2+bx+ayF=a2+b2+x2+y2+bx+ay

Lời giải:

Sử dụng giả thiết ax−by=√3ax−by=3 ta có:

(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3

Áp dụng bất đẳng thức CauchyCauchy , suy ra:

a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3

Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by

Ta có:

(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9

⇒2√x2+3+x≥3⇒2x2+3+x≥3

Vậy MinT=3MinT=3

Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;

∑2a2−bcb2−bc+c2≥3∑2a2−bcb2−bc+c2≥3

Không mất tính tổng quát, ta có thể giả sử bb là số nằm giữa aa và cc

BĐT đã cho tương đương với

∑2a2+(b−c)2b2−bc+c2≥6∑2a2+(b−c)2b2−bc+c2≥6

Áp dụng BĐT Cauchy-Schwarz, ta có

∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a

∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a

Do đó ta chỉ cần chứng minh

(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)

Ta có 

b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)

≥a2(b−c)2+c2(a−b)2≥a2(b−c)2+c2(a−b)2

Suy ra 

2b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)22b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)2

⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a

Do đó ta chỉ còn phải chứng minh 

(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a

⇔∑a4+abc∑a≥2∑a2b2⇔∑a4+abc∑a≥2∑a2b2

BĐT này hiển nhiên đúng theo BĐT Schur

∑a4+abc∑a≥∑ab(a2+b2)∑a4+abc∑a≥∑ab(a2+b2)

Và BĐT AM-GM

∑ab(a2+b2)≥2∑a2b2∑ab(a2+b2)≥2∑a2b2

Kết thúc chứng minh 

Đẳng thức xảy ra khi a=b=ca=b=c hoặc a=ba=b, c=0c=0 và các hoán vị.

26 tháng 10 2017

Bạn leminhduc tự hỏi tự trả lời à

29 tháng 6 2017

ta có :

A,B,C tỉ lệ với a,b,c

\(\Rightarrow\frac{A}{a}=\frac{B}{b}=\frac{C}{c}\)

đặt \(\frac{A}{a}=\frac{B}{b}=\frac{C}{c}=k\)

\(\Rightarrow\)A = ak ; B = bk ; C = ck

\(\Rightarrow Q=\frac{akx+bky+ck}{ax+by+c}=\frac{k.\left(ax+by+c\right)}{ax+by+c}=k\)

Vậy giá trị của Q không phụ thuộc vào x và y

a) Xét (O) có 

NA là tiếp tuyến có A là tiếp điểm(gt)

NE là tiếp tuyến có E là tiếp điểm(gt)

Do đó: ON là tia phân giác của \(\widehat{AOE}\)(Tính chất hai tiếp tuyến cắt nhau)

hay \(\widehat{AOE}=2\cdot\widehat{EON}\)

Xét (O) có 

ME là tiếp tuyến có E là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OM là tia phân giác của \(\widehat{EOB}\)(Tính chất hai tiếp tuyến cắt nhau)

hay \(\widehat{EOB}=2\cdot\widehat{EOM}\)

Ta có: \(\widehat{EOA}+\widehat{EOB}=180^0\)(hai góc kề bù)

hay \(2\cdot\widehat{EON}+2\cdot\widehat{EOM}=180^0\)

\(\Leftrightarrow\widehat{EON}+\widehat{EOM}=90^0\)

hay \(\widehat{MON}=90^0\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào \(\Delta\)ONM vuông tại O có OE là đường cao ứng với cạnh huyền NM, ta được:

\(ME\cdot NE=OE^2\)

mà OE=R

nên \(ME\cdot NE=R^2\)(đpcm)

4 tháng 10 2020

Ta có\(\frac{A}{a}=\frac{B}{b}=\frac{C}{c}=\frac{A+B+C}{a+b+c}\)(1)

Đặt \(\frac{A}{a}=\frac{B}{b}=\frac{C}{c}=\Rightarrow\frac{Ax}{ax}=\frac{By}{by}=\frac{C}{c}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{A}{a}=\frac{B}{b}=\frac{C}{c}=\frac{Ax}{ax}=\frac{By}{by}=\frac{C}{c}=\frac{Ax+By+C}{ax+by+c}=Q\)(2)

Từ (1)(2) => \(\frac{A+B+C}{a+b+c}=\frac{Ax+By+C}{ax+by+c}\)

=> Biểu thức Q không phụ thuộc vào biến x;y

24 tháng 10 2021

a) ta có: \(\widehat{BAx}+\widehat{ABy}=60^o+120^o=180^o\)

Mà 2 góc này là 2 góc trong cùng phía ⇒Ax//By

b) ta có: \(\widehat{CBy}+\widehat{BCz}=140^o+40^o=180^o\)

Mà 2 góc này là 2 góc trong cùng phía ⇒By//Cz

c) Ax//By, By//Cz⇒Ax//Cz

24 tháng 10 2021

cảm ơn bạn nhiều lắm ko bt bạn sinh năm bao nhiêu để dễ xưng hô