K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có 

NA là tiếp tuyến có A là tiếp điểm(gt)

NE là tiếp tuyến có E là tiếp điểm(gt)

Do đó: ON là tia phân giác của \(\widehat{AOE}\)(Tính chất hai tiếp tuyến cắt nhau)

hay \(\widehat{AOE}=2\cdot\widehat{EON}\)

Xét (O) có 

ME là tiếp tuyến có E là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: OM là tia phân giác của \(\widehat{EOB}\)(Tính chất hai tiếp tuyến cắt nhau)

hay \(\widehat{EOB}=2\cdot\widehat{EOM}\)

Ta có: \(\widehat{EOA}+\widehat{EOB}=180^0\)(hai góc kề bù)

hay \(2\cdot\widehat{EON}+2\cdot\widehat{EOM}=180^0\)

\(\Leftrightarrow\widehat{EON}+\widehat{EOM}=90^0\)

hay \(\widehat{MON}=90^0\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào \(\Delta\)ONM vuông tại O có OE là đường cao ứng với cạnh huyền NM, ta được:

\(ME\cdot NE=OE^2\)

mà OE=R

nên \(ME\cdot NE=R^2\)(đpcm)

a: Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm

MQ là tiếp tuyến có Q là tiếp điểm

Do đó: MA=MQ

Xét (O) có

EQ là tiếp tuyến có Q là tiếp điểm

EB là tiếp tuyến có B là tiếp điểm

Do đó: EQ=EB

Ta có: QM+QE=EM

hay EM=AM+BE

27 tháng 10 2017

= √x(√a + √b) - √y(√a + √b)

= (√a + √b)(√x - √y) (với x, y, a và b đều không âm)

14 tháng 5 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a)Ta có: DN và DB là hai tiếp tuyến cắt nhau tại D ⇒ DN = DB

CA và CN là hai tiếp tuyến cắt nhau tại C ⇒ CA = CN

Khi đó: DB + CA = DN + CN = DC

Mặt khác OC và OD lần lượt là hai phân giác của hai góc ∠(AON) và ∠(BON) kề bù nên

∠(COD) = 90 0

Trong tam giác vuông COD có ON là đường cao nên:

DN.CN = ON 2  = R 2

Hay AC.BD = R 2  (không đổi)

1. Cho nửa đường tròn (O, R), điểm C nằm trên nửa đường tròn. Kẻ các tiếp tuyến Ax, By tại A và B của nửa đường tròn. OC cắt Ax tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt By tại F. a) Chứng minh: AD. BF không đổi và DF là tiếp tuyến của (O). b) AE cắt OC tại G, BC cắt OE tại H. Chứng minh: CH. CB = EG. EA và bằng giá trị không đổi. c) Gọi I là tiếp điểm của DF với (O). IG cắt BC...
Đọc tiếp

1. Cho nửa đường tròn (O, R), điểm C nằm trên nửa đường tròn. Kẻ các tiếp tuyến Ax, By tại A và B của nửa đường tròn. OC cắt Ax tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt By tại F.

a) Chứng minh: AD. BF không đổi và DF là tiếp tuyến của (O).

b) AE cắt OC tại G, BC cắt OE tại H. Chứng minh: CH. CB = EG. EA và bằng giá trị không đổi.

c) Gọi I là tiếp điểm của DF với (O). IG cắt BC tại K, IH cắt AE tại L. Chứng minh: KL // CE và A, K, L, B cùng thuộc một đường tròn (đồng viên)

2. Cho nửa đường tròn (O, R), điểm C chạy trên đường tròn sao cho số đo cung AC không lớn hơn 90o. Kẻ các tiếp tuyến tại A và B của nửa đường tròn. OC cắt tiếp tuyến tại A tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt tiếp tuyến tại B tại F. Tiếp tuyến tại C của nửa đường tròn cắt tiếp tuyến tại A tại M, tiếp tuyến tại E của nửa đường tròn cắt tiếp tuyến tại A tại N. AE cắt BC tại J. Chứng minh:

a) DF tiếp xúc với (O) và M, J, N thẳng hàng.

b) Gọi I là tiếp điểm của DF với (O). Chứng minh: MJ. JN \(\le\) DI. IF

c) Tìm quỹ tích của điểm J khi C di động mà thỏa mãn các điều kiện trong giả thiết.

3. Cho nửa đường tròn (O, R), P là điểm chính giữa của cung AB, điểm C chạy trên phần tư đường tròn chứa điểm A (C khác A và P). Kẻ các tiếp tuyến tại A và B của nửa đường tròn. OC cắt tiếp tuyến tại A tại D, đường vuông góc với OC cắt nửa đường tròn tại E, cắt tiếp tuyến tại B tại F.

a) Chứng minh: DF có đúng 1 điểm chung với (O).

b) Gọi I là điểm chung đó, AE cắt BC tại J, AE cắt OC tại G, BC cắt OE tại H. Chứng minh: ICGJ, IEHJ nội tiếp và CE vuông góc với IJ.

c) Gọi K và L là giao của đường tròn ngoại tiếp tứ giác ICGJ, IEHJ với CE. Chứng minh: GL. GI + HK. HI = GC2 + HE2 và tính diện tích lớn nhất của hình ICGJHE theo R.

d) Chứng minh: OG. OC + OH. OE \(\ge\) 2. OJ. OI. 

Cần các bạn giúp đỡ, đặc biệt là ý c, d của bài 3 ạ.

0

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

hay ΔCOD vuông tại O

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(MC\cdot MD=MO^2=R^2=AC\cdot BD\)