Cho tam giác ABC và điểm D trên cạnh AB sao cho AD =2/3DB. Qua D kẻ đường thẳng song song với BC và cắt AC ở E.
1/ chứng minh rằng ΔADE ~ ΔABC. tính tỉ số đồng dạng
2/ Tính chu vi ΔADE, biết chu vi tam giác ABC =60cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: DE // BC (gt)
⇒∠(D1 ) =∠B (đồng vị) (1)
Do EF // AB (gt)
⇒∠(F1 ) =∠B (đồng vị) (2)
Từ (1) và (2) suy ra: ∠(D1 ) =∠F1
Xét Δ ADE và Δ EFC, ta có:
∠A =∠(E1 ) (hai góc đồng vị, EF// AB)
AD = EF ( chứng minh a)
∠(D1 ) =∠(F1 ) (chứng minh trên)
Suy ra : Δ ADE = Δ EFC(g.c.g)
Ta có: \(\dfrac{MB}{MC}=\dfrac{1}{2}\)(gt)
nên MC=2MB
Ta có: MB+MC=BC(M nằm giữa B và C)
nên BC=2MB+MB=3MB
hay \(\dfrac{MB}{BC}=\dfrac{1}{3}\)
Xét ΔABC có
M∈BC(gt)
D∈AB(gt)
MD//AC(gt)
Do đó: ΔBMD\(\sim\)ΔBCA(Định lí tam giác đồng dạng)
⇒\(\dfrac{C_{BMD}}{C_{BCA}}=\dfrac{BM}{BC}\)(Tỉ số chu vi giữa hai tam giác đồng dạng)
\(\Leftrightarrow\dfrac{C_{BMD}}{24}=\dfrac{1}{3}\)
hay \(C_{DBM}=8\left(cm\right)\)
Ta có: \(\dfrac{MB}{MC}=\dfrac{1}{2}\)(gt)
nên \(MB=\dfrac{1}{2}MC\)
Ta có: MB+MC=BC(M nằm giữa B và C)
nên \(BC=\dfrac{1}{2}MC+MC=\dfrac{3}{2}MC\)
hay \(\dfrac{MC}{BC}=\dfrac{2}{3}\)
Xét ΔCBA có
M∈BC(gt)
E∈CA(Gt)
ME//AB(gt)
Do đó: ΔCME∼ΔCBA(Định lí tam giác đồng dạng)
\(\Leftrightarrow\dfrac{C_{CME}}{C_{CBA}}=\dfrac{CM}{CB}\)(Tỉ số chu vi giữa hai tam giác đồng dạng)
⇔\(\dfrac{C_{CME}}{24}=\dfrac{2}{3}\)
hay \(C_{CME}=\dfrac{48}{3}=16\left(cm\right)\)
Vậy: \(C_{DBM}=8\left(cm\right)\); \(C_{CME}=16\left(cm\right)\)
1: Xét ΔADE và ΔABC có
góc ADE=góc ABC
góc DAE chung
DO đó: ΔADE đồg dạng với ΔABC
2: \(\dfrac{C_{ADE}}{C_{ABC}}=\dfrac{AD}{AB}=\dfrac{2}{5}\)
nên \(C_{ADE}=24\left(cm\right)\)