K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2022

\(\dfrac{x-2}{x+1}-\dfrac{3}{x+2}>0.\left(x\ne-1;-2\right).\\ \Leftrightarrow\dfrac{x^2-4-3x-3}{\left(x+1\right)\left(x+2\right)}>0.\\ \Leftrightarrow\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)    

Đặt \(f\left(x\right)=\dfrac{x^2-3x-7}{\left(x+1\right)\left(x+2\right)}>0.\)

Ta có: \(x^2-3x-7=0.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{37}}{2}.\\x=\dfrac{3-\sqrt{37}}{2}.\end{matrix}\right.\)

          \(x+1=0.\Leftrightarrow x=-1.\\ x+2=0.\Leftrightarrow x=-2.\)

Bảng xét dấu:

undefined

\(\Rightarrow f\left(x\right)>0\Leftrightarrow x\in\left(-\infty-2\right)\cup\left(\dfrac{3-\sqrt{37}}{2};-1\right)\cup\left(\dfrac{3+\sqrt{37}}{2};+\infty\right).\)

\(\sqrt{x^2-3x+2}\ge3.\\ \Leftrightarrow x^2-3x+2\ge9.\\ \Leftrightarrow x^2-3x-7\ge0.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{37}}{2}.\\x=\dfrac{3+\sqrt{37}}{2}.\end{matrix}\right.\)

Đặt \(f\left(x\right)=x^2-3x-7.\)

\(f\left(x\right)=x^2-3x-7.\)

\(\Rightarrow f\left(x\right)\ge0\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)

\(\Rightarrow\sqrt{x^2-3x+2}\ge3\Leftrightarrow x\in(-\infty;\dfrac{3-\sqrt{37}}{2}]\cup[\dfrac{3+\sqrt{37}}{2};+\infty).\)

9 tháng 2 2023

Đặt \(t=\sqrt{10-x}+\sqrt{x-7}\) để làm gì vậy bạn? Đặt như vậy thì phương trình sẽ càng khó giải hơn á

Đk: \(-7\le x\le10\)

\(\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1\)

\(\Leftrightarrow\sqrt{10-x}-\sqrt{x+7}+\sqrt{\left(10-x\right)\left(x+7\right)}=1\)

\(\Leftrightarrow\sqrt{10-x}\left(\sqrt{x+7}+1\right)-\left(\sqrt{x+7} +1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+7}+1\right)\left(\sqrt{10-x}-1\right)=0\)

Dễ thấy \(\sqrt{x+7}+1>0\). Do đó:

\(\sqrt{10-x}-1=0\Leftrightarrow x=9\left(nhận\right)\)

Thử lại ta có x=9 là nghiệm duy nhất của pt đã cho.

9 tháng 2 2023

`\sqrt{10-x}-\sqrt{x+7}+\sqrt{-x^2+3x+70}=1`     `ĐK: -7 <= x <= 10`

Đặt `\sqrt{10-x}-\sqrt{x+7}=t`

`<=>10-x+x+7-2\sqrt{(x+7)(10-x)}=t^2`

`<=>\sqrt{-x^2+3x+70}=17/2-[t^2]/2`

Khi đó ptr `(1)` có dạng: `t+17/2-[t^2]/2=1`

`<=>2t+17-t^2=2`

`<=>t^2-2t-15=0`

`<=>[(t=5),(t=-3):}`

`@t=5=>\sqrt{-x^2+3x+70}=17/2-5^2/2`

  `<=>\sqrt{-x^2+3x+70}=-4` (Vô lí)

`@t=-3=>\sqrt{-x^2+3x+70}=17/2-[(-3)^2]/2`

  `<=>-x^2+3x+70=16`

  `<=>[(x=9),(x=-6):}` (t/m)

Vậy `S={-6;9}`

29 tháng 8 2015

Điều kiện xác định phương trình \(x\ge\frac{1}{4}\).

Nhân cả hai vế với \(\sqrt{2}\) phương trình tương đương với

\(\sqrt{4x-2\sqrt{4x-1}}-\sqrt{4x+2\sqrt{4x-1}=4}\leftrightarrow\left|\sqrt{4x-1}-1\right|-\left|\sqrt{4x-1}+1\right|=4\)

\(\leftrightarrow\left|\sqrt{4x-1}-1\right|-\sqrt{4x-1}=5\).

Trường hợp 1. NẾU \(x\ge\frac{1}{2}\to\sqrt{4x-1}-1-\sqrt{4x-1}=5\to\) loại

Trường hợp 2. NẾU \(\frac{1}{4}\le x