Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gửi đề ạ, chứ sao trên đó nó không hiện đề
\(\begin{cases} x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\ x+y=1 (2) \end{cases} \)
\(ĐKXĐ:x;y\ge2\)
Trừ 2 vế của hệ cho nhau ta được
\(\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{y-2}-\sqrt{x-2}\right)=0\)
\(\Leftrightarrow\frac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\frac{y-2-x+2}{\sqrt{y-2}+\sqrt{x-2}}=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x+1}+\sqrt{y+1}}-\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)(1)
Vì \(\sqrt{x+1}+\sqrt{y+1}>\sqrt{x-2}+\sqrt{y-2}\)
\(\Rightarrow\frac{1}{\sqrt{x+1}+\sqrt{y+1}}< \frac{1}{\sqrt{x-2}+\sqrt{y-2}}\)
\(\Rightarrow\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}< 0\)(2)
Từ (1) và (2) => x - y = 0
<=> x = y
Thay vào 1 trong 2 pt ban đầu có
\(\sqrt{x+1}+\sqrt{x-2}=3\)
\(\Leftrightarrow x+1+2\sqrt{\left(x+1\right)\left(x-2\right)}+x-2=9\)
\(\Leftrightarrow\sqrt{x^2-x-2}=5-x\)
\(\Leftrightarrow\hept{\begin{cases}x\le5\\x^2-x-2=25-10x+x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le5\\9x=27\end{cases}}\)
\(\Leftrightarrow x=3\left(tmĐKXĐ\right)\)
Vậy pt có nghiệm duy nhất x = 3
\(ĐKXĐ:x;y\ge2\)
\(\hept{\begin{cases}\sqrt{x-2}-y\sqrt{y}=\sqrt{y-2}-x\sqrt{x}\left(1\right)\\3x^2-y^2-xy-7x+y+5=0\left(2\right)\end{cases}}\)
Giải \(\left(1\right)\Leftrightarrow\sqrt{x-2}-\sqrt{y-2}+x\sqrt{x}-y\sqrt{y}=0\)
\(\Leftrightarrow\frac{x-2-y+2}{\sqrt{x-2}+\sqrt{y-2}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-2}+\sqrt{y-2}}+x+\sqrt{xy}+y\right)=0\)
Kết hợp ĐKXĐ dễ thấy cái ngoặc to luôn dương
Nên \(\sqrt{x}-\sqrt{y}=0\Rightarrow x=y\)
Thay vào pt (2) đc
\(3x^2-x^2-x^2-7x+x+5=0\)
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\left(thoa\cdot man\cdot DKXD\right)\\x=5\Rightarrow y=5\left(Thoa\cdot man\cdot DKXD\right)\end{cases}}\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
\(ĐKXĐ:x\ge-1;2x+y\ne0\)
Ta có:\(\sqrt{x+1}-\frac{2}{2x+y}=-1\Rightarrow3\sqrt{x+1}-\frac{6}{2x+y}=-3\left(1\right)\)
\(\sqrt{4x+4}+\frac{3}{2x+y}=5\Rightarrow2\sqrt{4\left(x+1\right)}+\frac{6}{2x+y}=10\Rightarrow4\sqrt{x+1}+\frac{6}{2x+y}=10\left(2\right)\)
Lấy (1) cộng (2) ta được:
\(\Rightarrow4\sqrt{x+1}+3\sqrt{x+1}=7\Rightarrow7\sqrt{x+1}=7\Rightarrow\sqrt{x+1}=1\Rightarrow x+1=1\Rightarrow x=0\left(TM\right)\)
Khi đó ta có:\(\Rightarrow\sqrt{0+1}-\frac{2}{2.0+y}=-1\Rightarrow1-\frac{2}{y}=-1\Rightarrow\frac{2}{y}=2\Rightarrow y=1\)
Vậy \(x,y\in\left\{0;1\right\}\)
\(1,\hept{\begin{cases}x+2y=5\\3x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}3x+6y=15\\3x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}\)
\(2,\hept{\begin{cases}9y-2x=10\\4x-2y=12\end{cases}\Leftrightarrow}\hept{\begin{cases}9y-2x=10\\2x-y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)
\(3,\hept{\begin{cases}\sqrt{4x-y}=a\\8x-2y=2a^2\end{cases}\Leftrightarrow\hept{\begin{cases}8x-2y=2a^2\\8x-2y=2a^2\end{cases}}\Leftrightarrow khong}cogiatri\)
3)\(\hept{\begin{cases}8x-2y=2a^2\\8x-2y=2a^2\end{cases}}\Leftrightarrow8x-2y=2a^2\) có vô số nghiệm em nhé!