cho tam giác ABC vuông tại A có AB=AC. Qua A kẻ đường thẳng xy (B,C nằm cùng phía với xy). Kẻ BD và CE vuông góc với xy. CMR
a) tam giác BAD= tam giác ACE
b) DE=BD+CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔAEC= ΔBDA
⇒AE = BD và EC = DA
Mà DE = DA + AE
Vậy: DE = CE + BD
Xét ΔABD và ΔCAE có:
Góc ADB=Góc CEA=90
AB=AC
GócABD=Góc CAE( cùng phụ góc BAD)
=>ΔABD=ΔCAE
b) Ta có ΔABD=ΔCAE
=> AD=CE và BD=AE
=>BD+CE=AE+AD=ED
Ta có; góc A1+ góc A2+ góc A3= góc xAy
A1 +A3= 1800 -900= 900 (1)
BD vuông góc với xy tại D (gt)
⇒ D= 900
Xét Δ BDA, có
D+ B+ A3= 1800 (định lí)
900 +B+ A3= 1800
B+ A3= 1800 -900 =900 (2)
Từ (1) , (2) ⇒ A1+ A3= B+ A3 =900
=) A1= B
Xét Δ ECA và ΔDBA, có
E=D =900
AC= AB (GT)
A3= B( cmt)
Vậy, Δ ECA = ΔDBA ( cạnh huyền -góc nhọn)
b) Ta có: Δ ECA = ΔDBA ( ý trên)
=) AD= EC (2 cạnh t/ ứng)
DB= AE (2 cạnh t/ứng)
=) AD+AE= EC+ DB= AE
Vậy EC+ DB= AE